【MATLAB第72期】基于MATLAB的LightGbm(LGBM)梯度增强决策树多输入多输出回归预测模型

【MATLAB第72期】基于MATLAB的LightGbm(LGBM)梯度增强决策树多输入多输出回归预测模型

一、学习资料

(LGBM)是一种基于梯度增强决策树(GBDT)算法。

往期研究了多输入单输出回归预测方法,本次研究多输入多输出回归预测。
参考链接:

lightgbm原理参考链接:
训练过程评价指标metric函数参考链接:
lightgbm参数介绍参考链接:
lightgbm调参参考链接:


二、回归预测(多输入多输出)

1.数据设置

数据(103个样本,6输入2输出)
2.预测结果


3.参数设置

clike 复制代码
parameters=containers.Map;
parameters('task')='train';
parameters('boosting_type')='gbdt';
parameters('metric')='rmse';
parameters('num_leaves')=31;
parameters('learning_rate')=0.05; %越大,训练集效果越好
parameters('feature_fraction')=0.9;
parameters('bagging_fraction')=0.8;
parameters('bagging_freq')=5;
parameters('num_threads')=1;
parameters('verbose')=1;

4.训练过程

clike 复制代码
[   1]  train rmse 0.233357
[   2]  train rmse 0.231044
[   3]  train rmse 0.228797
[   4]  train rmse 0.227415
............
[ 497]  train rmse 0.085027
[ 498]  train rmse 0.085003
[ 499]  train rmse 0.084895
[ 500]  train rmse 0.084889
bestIteration: 500
变量1训练集数据的R2为:0.86962
变量1测试集数据的R2为:0.68349
变量1训练集数据的MAE为:17.4661
变量1测试集数据的MAE为:30.9187
变量1训练集数据的MBE为:0.41216
变量1测试集数据的MBE为:10.9088
变量2训练集数据的R2为:-1.6106
变量2测试集数据的R2为:-1.3039
变量2训练集数据的MAE为:9.6898
变量2测试集数据的MAE为:10.2226
变量2训练集数据的MBE为:-2.193
变量2测试集数据的MBE为:-1.9149

5.特征变量敏感性分析

三、代码获取

CSDN后台私信回复"72期"即可获取下载方式。

相关推荐
亲持红叶12 小时前
sklearn中的决策树-分类树:重要参数
决策树·分类·sklearn
matlabgoodboy16 小时前
Matlab代编电气仿真电力电子电机控制自动化新能源微电网储能能量
开发语言·matlab·自动化
IT猿手17 小时前
超多目标优化:基于导航变量的多目标粒子群优化算法(NMOPSO)的无人机三维路径规划,MATLAB代码
人工智能·算法·机器学习·matlab·无人机
Evaporator Core19 小时前
MATLAB学习之旅:数据建模与仿真应用
开发语言·学习·matlab
项目申报小狂人20 小时前
改进收敛因子和比例权重的灰狼优化算法【期刊论文完美复现】(Matlab代码实现)
开发语言·算法·matlab
IT猿手2 天前
2025最新智能优化算法:鲸鱼迁徙算法(Whale Migration Algorithm,WMA)求解23个经典函数测试集,MATLAB
android·数据库·人工智能·算法·机器学习·matlab·无人机
GIS遥感数据处理应用2 天前
MATLAB | 设置滑动窗口计算栅格数据的CV变异系数
matlab·arcgis·数据分析
圆滚滚的龙猫2 天前
matlab和java混合编程经验分享
java·matlab
studyer_domi2 天前
matlab 七自由度车辆模型轮毂电机驱动电动汽车的振动分析
matlab
没有不重的名么2 天前
MATLAB基础学习相关知识
数据结构·学习·matlab