【MATLAB第72期】基于MATLAB的LightGbm(LGBM)梯度增强决策树多输入多输出回归预测模型

【MATLAB第72期】基于MATLAB的LightGbm(LGBM)梯度增强决策树多输入多输出回归预测模型

一、学习资料

(LGBM)是一种基于梯度增强决策树(GBDT)算法。

往期研究了多输入单输出回归预测方法,本次研究多输入多输出回归预测。
参考链接:

lightgbm原理参考链接:
训练过程评价指标metric函数参考链接:
lightgbm参数介绍参考链接:
lightgbm调参参考链接:


二、回归预测(多输入多输出)

1.数据设置

数据(103个样本,6输入2输出)
2.预测结果


3.参数设置

clike 复制代码
parameters=containers.Map;
parameters('task')='train';
parameters('boosting_type')='gbdt';
parameters('metric')='rmse';
parameters('num_leaves')=31;
parameters('learning_rate')=0.05; %越大,训练集效果越好
parameters('feature_fraction')=0.9;
parameters('bagging_fraction')=0.8;
parameters('bagging_freq')=5;
parameters('num_threads')=1;
parameters('verbose')=1;

4.训练过程

clike 复制代码
[   1]  train rmse 0.233357
[   2]  train rmse 0.231044
[   3]  train rmse 0.228797
[   4]  train rmse 0.227415
............
[ 497]  train rmse 0.085027
[ 498]  train rmse 0.085003
[ 499]  train rmse 0.084895
[ 500]  train rmse 0.084889
bestIteration: 500
变量1训练集数据的R2为:0.86962
变量1测试集数据的R2为:0.68349
变量1训练集数据的MAE为:17.4661
变量1测试集数据的MAE为:30.9187
变量1训练集数据的MBE为:0.41216
变量1测试集数据的MBE为:10.9088
变量2训练集数据的R2为:-1.6106
变量2测试集数据的R2为:-1.3039
变量2训练集数据的MAE为:9.6898
变量2测试集数据的MAE为:10.2226
变量2训练集数据的MBE为:-2.193
变量2测试集数据的MBE为:-1.9149

5.特征变量敏感性分析

三、代码获取

CSDN后台私信回复"72期"即可获取下载方式。

相关推荐
民乐团扒谱机3 小时前
深入浅出理解克尔效应(Kerr Effect)及 MATLAB 仿真实现
开发语言·matlab·光学·非线性光学·克尔效应·kerr effect
leo__5205 小时前
MATLAB实现高光谱分类算法
支持向量机·matlab·分类
民乐团扒谱机17 小时前
脉冲在克尔效应下的频谱展宽仿真:原理与 MATLAB 实现
开发语言·matlab·光电·非线性光学·克尔效应
yuan1999717 小时前
基于扩展卡尔曼滤波的电池荷电状态估算的MATLAB实现
开发语言·matlab
chao18984417 小时前
多光谱图像融合:IHS、PCA与小波变换的MATLAB实现
图像处理·计算机视觉·matlab
我爱C编程17 小时前
基于无六环H校验矩阵和归一化偏移minsum算法的LDPC编译码matlab性能仿真
matlab·矩阵·ldpc·无六环·归一化偏移·minsum
bubiyoushang88818 小时前
使用MATLAB计算梁单元的刚度矩阵和质量矩阵
开发语言·matlab·矩阵
lqqjuly1 天前
Matlab2025a实现双目相机标定~业余版
开发语言·matlab·相机标定·双目相机
机器学习之心1 天前
MATLAB基于BNT工具箱的多输入分类预测
matlab·分类
机器学习之心2 天前
MATLAB基于改进云物元的模拟机协同训练质量评价
matlab·改进云物元