【MATLAB第72期】基于MATLAB的LightGbm(LGBM)梯度增强决策树多输入多输出回归预测模型

【MATLAB第72期】基于MATLAB的LightGbm(LGBM)梯度增强决策树多输入多输出回归预测模型

一、学习资料

(LGBM)是一种基于梯度增强决策树(GBDT)算法。

往期研究了多输入单输出回归预测方法,本次研究多输入多输出回归预测。
参考链接:

lightgbm原理参考链接:
训练过程评价指标metric函数参考链接:
lightgbm参数介绍参考链接:
lightgbm调参参考链接:


二、回归预测(多输入多输出)

1.数据设置

数据(103个样本,6输入2输出)
2.预测结果


3.参数设置

clike 复制代码
parameters=containers.Map;
parameters('task')='train';
parameters('boosting_type')='gbdt';
parameters('metric')='rmse';
parameters('num_leaves')=31;
parameters('learning_rate')=0.05; %越大,训练集效果越好
parameters('feature_fraction')=0.9;
parameters('bagging_fraction')=0.8;
parameters('bagging_freq')=5;
parameters('num_threads')=1;
parameters('verbose')=1;

4.训练过程

clike 复制代码
[   1]  train rmse 0.233357
[   2]  train rmse 0.231044
[   3]  train rmse 0.228797
[   4]  train rmse 0.227415
............
[ 497]  train rmse 0.085027
[ 498]  train rmse 0.085003
[ 499]  train rmse 0.084895
[ 500]  train rmse 0.084889
bestIteration: 500
变量1训练集数据的R2为:0.86962
变量1测试集数据的R2为:0.68349
变量1训练集数据的MAE为:17.4661
变量1测试集数据的MAE为:30.9187
变量1训练集数据的MBE为:0.41216
变量1测试集数据的MBE为:10.9088
变量2训练集数据的R2为:-1.6106
变量2测试集数据的R2为:-1.3039
变量2训练集数据的MAE为:9.6898
变量2测试集数据的MAE为:10.2226
变量2训练集数据的MBE为:-2.193
变量2测试集数据的MBE为:-1.9149

5.特征变量敏感性分析

三、代码获取

CSDN后台私信回复"72期"即可获取下载方式。

相关推荐
斯汤雷3 小时前
Matlab绘图案例,设置图片大小,坐标轴比例为黄金比
数据库·人工智能·算法·matlab·信息可视化
鹿屿二向箔19 小时前
阀门流量控制系统MATLAB仿真PID
开发语言·matlab
没有黑科技19 小时前
0.雷达信号
matlab
QQ__17646198241 天前
Matlab安装tdms插件
开发语言·matlab·tdms插件
天`南1 天前
【三维异构Dvhop定位】基于灰狼优化算法的三维异构Dvhop定位算法【Matlab代码#93】
matlab·dvhop·异构无线传感器网络
小白狮ww1 天前
Retinex 算法 + MATLAB 软件,高效率完成图像去雾处理
开发语言·人工智能·算法·matlab·自然语言处理·图像识别·去雾处理
机器学习之心1 天前
区间预测 | QRTCN时间卷积神经网络分位数回归时间序列区间预测模型(Matlab完整源码和数据)
matlab·回归·cnn·分位数回归·时间卷积神经网络·qrtcn·区间预测模型
Matlab光学2 天前
MATLAB仿真:Ince-Gaussian光束和Ince-Gaussian矢量光束
开发语言·算法·matlab
东雁西飞2 天前
MATLAB 控制系统设计与仿真 - 33
开发语言·算法·matlab·机器人·自动控制
落雨封海2 天前
Matlab基础知识与常见操作【无痛入门】
matlab