【MATLAB第72期】基于MATLAB的LightGbm(LGBM)梯度增强决策树多输入多输出回归预测模型

【MATLAB第72期】基于MATLAB的LightGbm(LGBM)梯度增强决策树多输入多输出回归预测模型

一、学习资料

(LGBM)是一种基于梯度增强决策树(GBDT)算法。

往期研究了多输入单输出回归预测方法,本次研究多输入多输出回归预测。
参考链接:

lightgbm原理参考链接:
训练过程评价指标metric函数参考链接:
lightgbm参数介绍参考链接:
lightgbm调参参考链接:


二、回归预测(多输入多输出)

1.数据设置

数据(103个样本,6输入2输出)
2.预测结果


3.参数设置

clike 复制代码
parameters=containers.Map;
parameters('task')='train';
parameters('boosting_type')='gbdt';
parameters('metric')='rmse';
parameters('num_leaves')=31;
parameters('learning_rate')=0.05; %越大,训练集效果越好
parameters('feature_fraction')=0.9;
parameters('bagging_fraction')=0.8;
parameters('bagging_freq')=5;
parameters('num_threads')=1;
parameters('verbose')=1;

4.训练过程

clike 复制代码
[   1]  train rmse 0.233357
[   2]  train rmse 0.231044
[   3]  train rmse 0.228797
[   4]  train rmse 0.227415
............
[ 497]  train rmse 0.085027
[ 498]  train rmse 0.085003
[ 499]  train rmse 0.084895
[ 500]  train rmse 0.084889
bestIteration: 500
变量1训练集数据的R2为:0.86962
变量1测试集数据的R2为:0.68349
变量1训练集数据的MAE为:17.4661
变量1测试集数据的MAE为:30.9187
变量1训练集数据的MBE为:0.41216
变量1测试集数据的MBE为:10.9088
变量2训练集数据的R2为:-1.6106
变量2测试集数据的R2为:-1.3039
变量2训练集数据的MAE为:9.6898
变量2测试集数据的MAE为:10.2226
变量2训练集数据的MBE为:-2.193
变量2测试集数据的MBE为:-1.9149

5.特征变量敏感性分析

三、代码获取

CSDN后台私信回复"72期"即可获取下载方式。

相关推荐
wenxin-几秒前
NS3网络模拟器中如何利用Gnuplot工具像MATLAB一样绘制各类图形?
开发语言·matlab·画图·ns3·lr-wpan
硬汉嵌入式6 小时前
《安富莱嵌入式周报》第349期:VSCode正式支持Matlab调试,DIY录音室级麦克风,开源流体吊坠,物联网在军工领域的应用,Unicode字符压缩解压
vscode·matlab·开源
小熊科研路(同名GZH)15 小时前
【Matlab高端绘图SCI绘图模板】第002期 绘制面积图
开发语言·matlab
肖田变强不变秃1 天前
C++实现矩阵Matrix类 实现基本运算
开发语言·c++·matlab·矩阵·有限元·ansys
码上飞扬2 天前
深入详解监督学习之回归与分类算法的全景视图
决策树·随机森林·监督学习·回归算法
jk_1012 天前
MATLAB中characterListPattern函数用法
开发语言·matlab
恩泽君2 天前
Matlab总提示内存不够用,明明小于电脑内存
开发语言·matlab
机器学习之心2 天前
回归预测 | MATLAB基于TCN-BiGRU时间卷积神经网络结合双向门控循环单元多输入单输出回归预测
matlab·回归·多输入单输出回归预测·cnn·tcn-bigru·时间卷积双向门控循环单元
Better Rose3 天前
【数学建模美赛速成系列】O奖论文绘图复现代码
数学建模·matlab
幻风_huanfeng3 天前
线性代数概述
人工智能·决策树·机器学习