【MATLAB第72期】基于MATLAB的LightGbm(LGBM)梯度增强决策树多输入多输出回归预测模型

【MATLAB第72期】基于MATLAB的LightGbm(LGBM)梯度增强决策树多输入多输出回归预测模型

一、学习资料

(LGBM)是一种基于梯度增强决策树(GBDT)算法。

往期研究了多输入单输出回归预测方法,本次研究多输入多输出回归预测。
参考链接:

lightgbm原理参考链接:
训练过程评价指标metric函数参考链接:
lightgbm参数介绍参考链接:
lightgbm调参参考链接:


二、回归预测(多输入多输出)

1.数据设置

数据(103个样本,6输入2输出)
2.预测结果


3.参数设置

clike 复制代码
parameters=containers.Map;
parameters('task')='train';
parameters('boosting_type')='gbdt';
parameters('metric')='rmse';
parameters('num_leaves')=31;
parameters('learning_rate')=0.05; %越大,训练集效果越好
parameters('feature_fraction')=0.9;
parameters('bagging_fraction')=0.8;
parameters('bagging_freq')=5;
parameters('num_threads')=1;
parameters('verbose')=1;

4.训练过程

clike 复制代码
[   1]  train rmse 0.233357
[   2]  train rmse 0.231044
[   3]  train rmse 0.228797
[   4]  train rmse 0.227415
............
[ 497]  train rmse 0.085027
[ 498]  train rmse 0.085003
[ 499]  train rmse 0.084895
[ 500]  train rmse 0.084889
bestIteration: 500
变量1训练集数据的R2为:0.86962
变量1测试集数据的R2为:0.68349
变量1训练集数据的MAE为:17.4661
变量1测试集数据的MAE为:30.9187
变量1训练集数据的MBE为:0.41216
变量1测试集数据的MBE为:10.9088
变量2训练集数据的R2为:-1.6106
变量2测试集数据的R2为:-1.3039
变量2训练集数据的MAE为:9.6898
变量2测试集数据的MAE为:10.2226
变量2训练集数据的MBE为:-2.193
变量2测试集数据的MBE为:-1.9149

5.特征变量敏感性分析

三、代码获取

CSDN后台私信回复"72期"即可获取下载方式。

相关推荐
legendary_bruce17 小时前
【22-决策树】
算法·决策树·机器学习
壹Y.2 天前
MATLAB 绘图速查笔记
笔记·matlab
Evand J2 天前
【MATLAB例程】滑动窗口均值滤波、中值滤波、最小值/最大值滤波对比。附代码下载链接
开发语言·matlab·均值算法
一株月见草哇3 天前
Matlab(4)
人工智能·算法·matlab
2401_823868223 天前
织构表面MATLAB仿真
人工智能·机器学习·matlab·信号处理
霖003 天前
高级项目——基于FPGA的串行FIR滤波器
人工智能·经验分享·matlab·fpga开发·信息与通信·信号处理
小白的高手之路3 天前
三、非线性规划
数学建模·matlab
IT猿手4 天前
2025年最新原创多目标算法:多目标酶作用优化算法(MOEAO)求解MaF1-MaF15及工程应用---盘式制动器设计,提供完整MATLAB代码
算法·数学建模·matlab·多目标优化算法·多目标算法
MATLAB代码顾问4 天前
MATLAB实现遗传算法求解路网路由问题
开发语言·算法·matlab
项目申报小狂人4 天前
2025年中科院2区红杉优化算法Sequoia Optimization Algorithm-附Matlab免费代码
算法·数学建模·matlab