OAK相机:自动或手动设置相机参数

OAK相机:自动或手动设置相机参数

硬件

使用硬件如下:

  • 4✖️ov9782相机
  • OAK-FFC-4P驱动板

硬件接线参考博主的一篇博客:OAK相机:多相机硬件同步拍摄

软件

博主使用的是Ubuntu18.04系统,首先配置所需的python环境:

1、下载SDK软件包:

bash 复制代码
git clone https://gitee.com/oakchina/depthai.git

2、安装依赖:

bash 复制代码
python3 -m pip install -r depthai/requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple

3、注意:在Linux平台并且第一次使用OAK需要配置udev规则

bash 复制代码
echo 'SUBSYSTEM=="usb", ATTRS{idVendor}=="03e7", MODE="0666"' | sudo tee /etc/udev/rules.d/80-movidius.rules
sudo udevadm control --reload-rules && sudo udevadm trigger

相关python API可参考官方文档:https://docs.luxonis.com/projects/api/en/latest/references/python/#

在此博主提供一个示例:四个相机通过硬件触发同步,使用ROS发布图像消息,并可以自动或手动设置相机参数,更多设置可参考官方文档的API加以修改,完整程序如下:

python 复制代码
# -*- coding: utf-8 -*-
#!/usr/bin/env python3
import depthai as dai
import yaml
import cv2
assert cv2.__version__[0] == '4', 'The fisheye module requires opencv version >= 3.0.0'
import numpy as np
import glob

NAME_LIST = ['cama', 'camb', 'camc', 'camd']

FPS = 20
AUTOSET = True

def clamp(num, v0, v1):
    return max(v0, min(num, v1))

class CameraArray:
    def __init__(self,fps=20):
        self.FPS = fps
        self.RESOLUTION = dai.ColorCameraProperties.SensorResolution.THE_800_P
        self.cam_list = ['cam_a', 'cam_b', 'cam_c', 'cam_d']
        self.cam_socket_opts = {
            'cam_a': dai.CameraBoardSocket.CAM_A,
            'cam_b': dai.CameraBoardSocket.CAM_B,
            'cam_c': dai.CameraBoardSocket.CAM_C,
            'cam_d': dai.CameraBoardSocket.CAM_D,
        }
        self.pipeline = dai.Pipeline()
        self.cam = {}
        self.xout = {}

        # color
        self.controlIn = self.pipeline.create(dai.node.XLinkIn)
        self.controlIn.setStreamName('control')
        for camera_name in self.cam_list:
            self.cam[camera_name] = self.pipeline.createColorCamera()
            self.cam[camera_name].setResolution(self.RESOLUTION)
            if camera_name == 'cam_a':  # ref trigger
                self.cam[camera_name].initialControl.setFrameSyncMode(dai.CameraControl.FrameSyncMode.OUTPUT)
            else:  # other trigger
                self.cam[camera_name].initialControl.setFrameSyncMode(dai.CameraControl.FrameSyncMode.INPUT)
            self.cam[camera_name].setBoardSocket(self.cam_socket_opts[camera_name])
            self.xout[camera_name] = self.pipeline.createXLinkOut()
            self.xout[camera_name].setStreamName(camera_name)
            self.cam[camera_name].isp.link(self.xout[camera_name].input)
            self.cam[camera_name].setFps(self.FPS)

        self.config = dai.Device.Config()
        self.config.board.gpio[6] = dai.BoardConfig.GPIO(dai.BoardConfig.GPIO.OUTPUT, dai.BoardConfig.GPIO.Level.HIGH)
        self.device = dai.Device(self.config)

    def start(self):
        self.device.startPipeline(self.pipeline)

        self.output_queue_dict = {}
        for camera_name in self.cam_list:
            self.output_queue_dict[camera_name] = self.device.getOutputQueue(name=camera_name, maxSize=1, blocking=False)

    def read_data(self):
        output_img = {}
        output_ts = {}
        for camera_name in self.cam_list:
            output_data = self.output_queue_dict[camera_name].tryGet()
            if output_data is not None:
                timestamp = output_data.getTimestampDevice()
                img = output_data.getCvFrame()
                # img = cv2.rotate(img, cv2.ROTATE_180)
                output_img[camera_name] = img
                output_ts[camera_name] = timestamp.total_seconds()
                # print(camera_name, timestamp, timestamp.microseconds, img.shape)
            else:
                # print(camera_name, 'No ouput')
                output_img[camera_name] = None
                output_ts[camera_name] = None
        return output_img, output_ts

if __name__ == '__main__':
    import rospy
    from sensor_msgs.msg import Image
    from std_msgs.msg import Header

    class CvBridge():
        def __init__(self):
            self.numpy_type_to_cvtype = {'uint8': '8U', 'int8': '8S', 'uint16': '16U',
                                            'int16': '16S', 'int32': '32S', 'float32': '32F',
                                            'float64': '64F'}
            self.numpy_type_to_cvtype.update(dict((v, k) for (k, v) in self.numpy_type_to_cvtype.items()))

        def dtype_with_channels_to_cvtype2(self, dtype, n_channels):
            return '%sC%d' % (self.numpy_type_to_cvtype[dtype.name], n_channels)

        def cv2_to_imgmsg(self, cvim, encoding = "passthrough"):
            img_msg = Image()
            img_msg.height = cvim.shape[0]
            img_msg.width = cvim.shape[1]
            if len(cvim.shape) < 3:
                cv_type = self.dtype_with_channels_to_cvtype2(cvim.dtype, 1)
            else:
                cv_type = self.dtype_with_channels_to_cvtype2(cvim.dtype, cvim.shape[2])
            if encoding == "passthrough":
                img_msg.encoding = cv_type
            else:
                img_msg.encoding = encoding

            if cvim.dtype.byteorder == '>':
                img_msg.is_bigendian = True
            img_msg.data = cvim.tobytes()
            img_msg.step = len(img_msg.data) // img_msg.height
            return img_msg

    bridge = CvBridge()

    img_pub_dict = {}
    rospy.init_node('camera_array', anonymous=True)
    rate = rospy.Rate(20)
    for camera_name in ['cam_a', 'cam_b', 'cam_c', 'cam_d']:
        img_pub_dict[camera_name] = rospy.Publisher('/img/'+str(camera_name), Image, queue_size=0)

    img_cnt_dict = {
        'cam_a':0, 'cam_b':0, 'cam_c':0, 'cam_d':0
    }
    camera_array = CameraArray(FPS)
    camera_array.start()

    controlQueue = camera_array.device.getInputQueue(camera_array.controlIn.getStreamName())
	
    if AUTOSET:
        ctrl = dai.CameraControl()
        ctrl.setAutoExposureEnable()
        ctrl.setAutoWhiteBalanceMode(dai.CameraControl.AutoWhiteBalanceMode.AUTO)
        controlQueue.send(ctrl)
    else:
		# Defaults and limits for manual focus/exposure controls
        expTime = 10000
        expMin = 1
        expMax = 33000
        
        sensIso = 100
        sensMin = 100
        sensMax = 1600
	
        wbManual = 3500
	    
        expTime = clamp(expTime, expMin, expMax)
        sensIso = clamp(sensIso, sensMin, sensMax)
        print("Setting manual exposure, time:", expTime, "iso:", sensIso)
        ctrl = dai.CameraControl()
        ctrl.setManualExposure(expTime, sensIso)
        ctrl.setManualWhiteBalance(wbManual)
        controlQueue.send(ctrl)

    first_time_cam = None
    first_time_local = None
    while not rospy.is_shutdown():
        output_img, output_ts = camera_array.read_data()
        
        if first_time_cam is None and output_ts['cam_a'] is not None:
            first_time_cam = output_ts['cam_a']
            first_time_local = rospy.Time.now().to_sec()
        
        for key in output_img.keys():
            if output_img[key] is None:
                continue
            frame = output_img[key]

            # convert
            img = bridge.cv2_to_imgmsg(undistorted_img, encoding="bgr8")
            img.header = Header()
            if first_time_cam is not None:
                ts = output_ts[key] - first_time_cam + first_time_local
                img.header.stamp = rospy.Time.from_sec(ts)
            else:
                img.header.stamp = rospy.Time.now()
            img_pub_dict[key].publish(img)
            
        rate.sleep()

将程序拷贝到本地,运行程序python camera.py;输入rostopic list,查看话题名;打开Rviz查看图像输出。

相关推荐
AI小杨1 分钟前
【车道线检测】一、传统车道线检测:基于霍夫变换的车道线检测史诗级详细教程
人工智能·opencv·计算机视觉·霍夫变换·车道线检测
晨曦_子画5 分钟前
编程语言之战:AI 之后的 Kotlin 与 Java
android·java·开发语言·人工智能·kotlin
道可云7 分钟前
道可云人工智能&元宇宙每日资讯|2024国际虚拟现实创新大会将在青岛举办
大数据·人工智能·3d·机器人·ar·vr
人工智能培训咨询叶梓16 分钟前
探索开放资源上指令微调语言模型的现状
人工智能·语言模型·自然语言处理·性能优化·调优·大模型微调·指令微调
zzZ_CMing16 分钟前
大语言模型训练的全过程:预训练、微调、RLHF
人工智能·自然语言处理·aigc
newxtc17 分钟前
【旷视科技-注册/登录安全分析报告】
人工智能·科技·安全·ddddocr
成都古河云19 分钟前
智慧场馆:安全、节能与智能化管理的未来
大数据·运维·人工智能·安全·智慧城市
UCloud_TShare21 分钟前
浅谈语言模型推理框架 vLLM 0.6.0性能优化
人工智能
软工菜鸡26 分钟前
预训练语言模型BERT——PaddleNLP中的预训练模型
大数据·人工智能·深度学习·算法·语言模型·自然语言处理·bert
vivid_blog32 分钟前
大语言模型(LLM)入门级选手初学教程 III
人工智能·语言模型·自然语言处理