【李宏毅】深度学习6:机器学习任务攻略

  1. 如果在测试集上的效果不佳,应该要做什么?
  2. Optimization 如何选择?
  3. 解决 overfitting 的方法?

测试集上的效果不佳

  1. 看训练数据的loss,是不是模型本身就没训练好?
    • 问题:model 太简单了,func set 中没有满足条件的 func (我觉得这就是一种欠拟合的状态吧)
    • 解决方案:使用更复杂的模型
  2. 优化法 Optimization 没有选对,比如通过梯度下降,结果收敛到局部最优。
  • 如何确定是 model 不够复杂还是优化法没有选对呢?可以先选择更复杂的模型,看有没有提升。假设换了更复杂的模型,还是没有学好的话,表明是 Optimization 的问题。

备注:如果训练层数变多,在训练集上的 loss 先减小后增大,这是的过拟合问题吗?(不是,因为过拟合是相对测试集来讲的,所以不是过拟合 overfitting

overfitting 的解决方案

mismatch

mismatch 是说训练和测试数据分布不一致带来的。不能靠增加训练数据来解决

相关推荐
Moshow郑锴3 小时前
人工智能中的(特征选择)数据过滤方法和包裹方法
人工智能
TY-20253 小时前
【CV 目标检测】Fast RCNN模型①——与R-CNN区别
人工智能·目标检测·目标跟踪·cnn
CareyWYR4 小时前
苹果芯片Mac使用Docker部署MinerU api服务
人工智能
失散134 小时前
自然语言处理——02 文本预处理(下)
人工智能·自然语言处理
mit6.8245 小时前
[1Prompt1Story] 滑动窗口机制 | 图像生成管线 | VAE变分自编码器 | UNet去噪神经网络
人工智能·python
sinat_286945195 小时前
AI应用安全 - Prompt注入攻击
人工智能·安全·prompt
迈火6 小时前
ComfyUI-3D-Pack:3D创作的AI神器
人工智能·gpt·3d·ai·stable diffusion·aigc·midjourney
Moshow郑锴7 小时前
机器学习的特征工程(特征构造、特征选择、特征转换和特征提取)详解
人工智能·机器学习
CareyWYR8 小时前
每周AI论文速递(250811-250815)
人工智能
AI精钢8 小时前
H20芯片与中国的科技自立:一场隐形的博弈
人工智能·科技·stm32·单片机·物联网