Augmented Large Language Models with Parametric Knowledge Guiding

本文是LLM系列文章,针对《Augmented Large Language Models with Parametric Knowledge Guiding》的翻译。

参数知识引导下的增强大型语言模型

  • 摘要
  • [1 引言](#1 引言)
  • [2 相关工作](#2 相关工作)
  • [3 LLM的参数化知识引导](#3 LLM的参数化知识引导)
  • [4 实验](#4 实验)
  • [5 结论](#5 结论)

摘要

大型语言模型(LLM)凭借其令人印象深刻的语言理解和生成能力,显著提高了自然语言处理(NLP)。然而,由于对相关数据的了解有限,对于需要专业知识的特定领域任务,它们的性能可能不太理想。此外,大多数最先进的LLM(只能通过API访问)缺乏透明度,阻碍了对域自定义数据的进一步微调。此外,向LLM所有者提供私人数据会导致数据隐私问题。为了应对这些挑战,我们提出了一种新的参数化知识引导(PKG)框架,该框架为LLM配备了一个知识引导模块,以便在不改变LLM参数的情况下访问相关知识。我们的PKG基于开源的"白盒"语言模型,允许LLM所需的任何知识的离线存储。我们证明,我们的PKG框架可以提高"黑匣子"LLM在一系列领域知识密集型任务中的性能,这些任务需要事实(+7.9%)、表格(+111.9%)、医学(+3.0%)和多模态(+8.1%)知识。

1 引言

2 相关工作

3 LLM的参数化知识引导

4 实验

5 结论

在这项工作中,我们提出了一种新的参数化知识引导(PKG)框架,通过为"黑匣子"LLM配备知识引导模块来提高它们在特定领域任务中的性能。我们的方法允许在运行时访问相关知识,而无需更改LLM的参数。实验证明了我们的PKG框架对各种领域知识密集型任务的有效性。
限制和未来工作。尽管我们的PKG在所提供的数据集上表现出了强大的性能,但它们仍然可能存在幻觉错误,导致提供不正确的背景知识。我们在附录E中提供了此类错误的例子。将我们的方法与检索方法相结合,以提高生成忠实度是未来研究的一个有希望的方向。

相关推荐
-嘟囔着拯救世界-1 天前
【保姆级教程】Win11 下从零部署 Claude Code:本地环境配置 + VSCode 可视化界面全流程指南
人工智能·vscode·ai·编辑器·html5·ai编程·claude code
正见TrueView1 天前
程一笑的价值选择:AI金玉其外,“收割”老人败絮其中
人工智能
Imm7771 天前
中国知名的车膜品牌推荐几家
人工智能·python
风静如云1 天前
Claude Code:进入dash模式
人工智能
TM1Club1 天前
AI驱动的预测:新的竞争优势
大数据·人工智能·经验分享·金融·数据分析·自动化
陈天伟教授1 天前
人工智能应用-机器听觉:15. 声纹识别的应用
人工智能·神经网络·机器学习·语音识别
zhang133830890751 天前
CG-09H 超声波风速风向传感器 加热型 ABS材质 重量轻 没有机械部件
大数据·运维·网络·人工智能·自动化
板面华仔1 天前
机器学习入门(三)——决策树(Decision Tree)
人工智能·决策树·机器学习
GAOJ_K1 天前
滚珠花键的无预压、间隙调整与过盈配合“场景适配型”
人工智能·科技·机器人·自动化·制造
ai_xiaogui1 天前
【开源探索】Panelai:重新定义AI服务器管理面板,助力团队私有化算力部署与模型运维
人工智能·开源·私有化部署·docker容器化·panelai·ai服务器管理面板·comfyui集群管理