Augmented Large Language Models with Parametric Knowledge Guiding

本文是LLM系列文章,针对《Augmented Large Language Models with Parametric Knowledge Guiding》的翻译。

参数知识引导下的增强大型语言模型

  • 摘要
  • [1 引言](#1 引言)
  • [2 相关工作](#2 相关工作)
  • [3 LLM的参数化知识引导](#3 LLM的参数化知识引导)
  • [4 实验](#4 实验)
  • [5 结论](#5 结论)

摘要

大型语言模型(LLM)凭借其令人印象深刻的语言理解和生成能力,显著提高了自然语言处理(NLP)。然而,由于对相关数据的了解有限,对于需要专业知识的特定领域任务,它们的性能可能不太理想。此外,大多数最先进的LLM(只能通过API访问)缺乏透明度,阻碍了对域自定义数据的进一步微调。此外,向LLM所有者提供私人数据会导致数据隐私问题。为了应对这些挑战,我们提出了一种新的参数化知识引导(PKG)框架,该框架为LLM配备了一个知识引导模块,以便在不改变LLM参数的情况下访问相关知识。我们的PKG基于开源的"白盒"语言模型,允许LLM所需的任何知识的离线存储。我们证明,我们的PKG框架可以提高"黑匣子"LLM在一系列领域知识密集型任务中的性能,这些任务需要事实(+7.9%)、表格(+111.9%)、医学(+3.0%)和多模态(+8.1%)知识。

1 引言

2 相关工作

3 LLM的参数化知识引导

4 实验

5 结论

在这项工作中,我们提出了一种新的参数化知识引导(PKG)框架,通过为"黑匣子"LLM配备知识引导模块来提高它们在特定领域任务中的性能。我们的方法允许在运行时访问相关知识,而无需更改LLM的参数。实验证明了我们的PKG框架对各种领域知识密集型任务的有效性。
限制和未来工作。尽管我们的PKG在所提供的数据集上表现出了强大的性能,但它们仍然可能存在幻觉错误,导致提供不正确的背景知识。我们在附录E中提供了此类错误的例子。将我们的方法与检索方法相结合,以提高生成忠实度是未来研究的一个有希望的方向。

相关推荐
小鑫同学2 分钟前
M4 MacBook Pro + Qwen 模型:企业问答机器人原型微调实战方案
人工智能·llm
搬砖的小码农_Sky12 分钟前
机器人商业化落地需要突破的关键性技术
人工智能·ai·机器人
xwz小王子13 分钟前
Science Robotics 封面论文:RoboBallet利用图神经网络和强化学习规划多机器人协作
人工智能·神经网络·机器人
Deepoch17 分钟前
当按摩机器人“活了”:Deepoc具身智能如何重新定义人机交互体验
人工智能·科技·机器人·人机交互·具身智能
37手游后端团队18 分钟前
Cursor实战:用Cursor实现积分商城系统
人工智能·后端
九章云极AladdinEdu23 分钟前
绿色算力技术栈:AI集群功耗建模与动态调频系统
人工智能·pytorch·深度学习·unity·游戏引擎·transformer·gpu算力
嘀咕博客35 分钟前
拍我AI:PixVerse国内版,爱诗科技推出的AI视频生成平台
人工智能·科技·音视频·ai工具
dlraba80236 分钟前
OpenCV 实战:多角度模板匹配实现图像目标精准定位
人工智能·opencv·计算机视觉
维维180-3121-14551 小时前
转录因子与蛋白互作研究综合解决方案:涵盖DAP-seq, Y2H, Co-IP等多种技术
人工智能·农业·植物·生物