Augmented Large Language Models with Parametric Knowledge Guiding

本文是LLM系列文章,针对《Augmented Large Language Models with Parametric Knowledge Guiding》的翻译。

参数知识引导下的增强大型语言模型

  • 摘要
  • [1 引言](#1 引言)
  • [2 相关工作](#2 相关工作)
  • [3 LLM的参数化知识引导](#3 LLM的参数化知识引导)
  • [4 实验](#4 实验)
  • [5 结论](#5 结论)

摘要

大型语言模型(LLM)凭借其令人印象深刻的语言理解和生成能力,显著提高了自然语言处理(NLP)。然而,由于对相关数据的了解有限,对于需要专业知识的特定领域任务,它们的性能可能不太理想。此外,大多数最先进的LLM(只能通过API访问)缺乏透明度,阻碍了对域自定义数据的进一步微调。此外,向LLM所有者提供私人数据会导致数据隐私问题。为了应对这些挑战,我们提出了一种新的参数化知识引导(PKG)框架,该框架为LLM配备了一个知识引导模块,以便在不改变LLM参数的情况下访问相关知识。我们的PKG基于开源的"白盒"语言模型,允许LLM所需的任何知识的离线存储。我们证明,我们的PKG框架可以提高"黑匣子"LLM在一系列领域知识密集型任务中的性能,这些任务需要事实(+7.9%)、表格(+111.9%)、医学(+3.0%)和多模态(+8.1%)知识。

1 引言

2 相关工作

3 LLM的参数化知识引导

4 实验

5 结论

在这项工作中,我们提出了一种新的参数化知识引导(PKG)框架,通过为"黑匣子"LLM配备知识引导模块来提高它们在特定领域任务中的性能。我们的方法允许在运行时访问相关知识,而无需更改LLM的参数。实验证明了我们的PKG框架对各种领域知识密集型任务的有效性。
限制和未来工作。尽管我们的PKG在所提供的数据集上表现出了强大的性能,但它们仍然可能存在幻觉错误,导致提供不正确的背景知识。我们在附录E中提供了此类错误的例子。将我们的方法与检索方法相结合,以提高生成忠实度是未来研究的一个有希望的方向。

相关推荐
白熊1882 分钟前
【图像生成大模型】Wan2.1:下一代开源大规模视频生成模型
人工智能·计算机视觉·开源·文生图·音视频
weixin_514548897 分钟前
一种开源的高斯泼溅实现库——gsplat: An Open-Source Library for Gaussian Splatting
人工智能·计算机视觉·3d
四口鲸鱼爱吃盐33 分钟前
BMVC2023 | 多样化高层特征以提升对抗迁移性
人工智能·深度学习·cnn·vit·对抗攻击·迁移攻击
Echo``1 小时前
3:OpenCV—视频播放
图像处理·人工智能·opencv·算法·机器学习·视觉检测·音视频
Douglassssssss1 小时前
【深度学习】使用块的网络(VGG)
网络·人工智能·深度学习
okok__TXF1 小时前
SpringBoot3+AI
java·人工智能·spring
SAP工博科技1 小时前
如何提升新加坡SAP实施成功率?解答中企出海的“税务合规密码” | 工博科技SAP金牌服务商
人工智能·科技·制造
闭月之泪舞1 小时前
OpenCv高阶(八)——摄像头调用、摄像头OCR
人工智能·opencv·ocr
終不似少年遊*2 小时前
【从基础到模型网络】深度学习-语义分割-ROI
人工智能·深度学习·卷积神经网络·语义分割·fcn·roi
Cchaofan2 小时前
lesson01-PyTorch初见(理论+代码实战)
人工智能·pytorch·python