PyTorch中,卷积层、池化层、转置卷积层输出特征图形状计算公式总结

在PyTorch中,卷积层(Convolutional Layer)、池化层(Pooling Layer,例如最大池化层)、以及转置卷积层(Transpose Convolutional Layer,也称为反卷积层或上采样层)的输出特征图形状可以根据输入特征图的形状和各层的参数计算输出。

假设输入特征图的形状为 (in_channel, in_height, in_width),以下是各层输出特征图形状的计算公式:

1. 卷积层(Convolutional Layer)输出特征图形状计算公式:

py 复制代码
out_channel = 卷积核的数量
out_height  = (in_height + 2 * padding - kernel_size) / stride + 1
out_width   = (in_width  + 2 * padding - kernel_size) / stride + 1

2. 池化层(Pooling Layer)输出特征图形状计算公式:

py 复制代码
out_channel = in_channel
out_height  = (in_height - kernel_size) / stride + 1
out_width   = (in_width  - kernel_size) / stride + 1

3. 转置卷积层(Transpose Convolutional Layer)输出特征图形状计算公式:

py 复制代码
out_channel = 卷积核的数量
out_height  = stride * (in_height - 1) + kernel_size - 2 * padding
out_width   = stride * (in_width  - 1) + kernel_size - 2 * padding
csharp 复制代码
如果步幅为s,填充为s/2(假设s/2是整数)且卷积核的高和宽为2s,转置卷积核会将输入的高和宽分别放大s倍

这些公式适用于PyTorch中的卷积、池化和转置卷积层,可以根据具体的网络架构和参数进行计算。

注意,PyTorch中的卷积层和池化层通常作为nn.Conv2dnn.MaxPool2d等模块提供,参数传递方式也要根据实际情况来设置。

相关推荐
gCode Teacher 格码致知3 小时前
Python基础教学:如何拼接字符串?-由Deepseek产生
python
还债大湿兄3 小时前
阿里通义千问调用图像大模型生成轮动漫风格 python调用
开发语言·前端·python
blank@l3 小时前
python测开小工具--日志查询分析工具
python·python接口自动化测试基础·python测试开发·日志查询分析·日志分析统计查询·软件测试工具·argparse模块
MobotStone3 小时前
数字沟通之道
人工智能·算法
Together_CZ3 小时前
Cambrian-S: Towards Spatial Supersensing in Video——迈向视频中的空间超感知
人工智能·机器学习·音视频·spatial·cambrian-s·迈向视频中的空间超感知·supersensing
hu_nil3 小时前
LLMOps-第十三周
python·vllm
空影星4 小时前
轻量日记神器RedNotebook,高效记录每一天
python·数据挖掘·数据分析·音视频
搬砖ing换来金砖4 小时前
Python入门-Task02
开发语言·python
databook4 小时前
告别盲人摸象,数据分析的抽样方法总结
后端·python·数据分析
caiyueloveclamp4 小时前
【功能介绍05】ChatPPT好不好用?如何用?用户操作手册来啦!——【AI辅写+分享篇】
人工智能·powerpoint·ai生成ppt·aippt·免费aippt