PyTorch中,卷积层、池化层、转置卷积层输出特征图形状计算公式总结

在PyTorch中,卷积层(Convolutional Layer)、池化层(Pooling Layer,例如最大池化层)、以及转置卷积层(Transpose Convolutional Layer,也称为反卷积层或上采样层)的输出特征图形状可以根据输入特征图的形状和各层的参数计算输出。

假设输入特征图的形状为 (in_channel, in_height, in_width),以下是各层输出特征图形状的计算公式:

1. 卷积层(Convolutional Layer)输出特征图形状计算公式:

py 复制代码
out_channel = 卷积核的数量
out_height  = (in_height + 2 * padding - kernel_size) / stride + 1
out_width   = (in_width  + 2 * padding - kernel_size) / stride + 1

2. 池化层(Pooling Layer)输出特征图形状计算公式:

py 复制代码
out_channel = in_channel
out_height  = (in_height - kernel_size) / stride + 1
out_width   = (in_width  - kernel_size) / stride + 1

3. 转置卷积层(Transpose Convolutional Layer)输出特征图形状计算公式:

py 复制代码
out_channel = 卷积核的数量
out_height  = stride * (in_height - 1) + kernel_size - 2 * padding
out_width   = stride * (in_width  - 1) + kernel_size - 2 * padding
csharp 复制代码
如果步幅为s,填充为s/2(假设s/2是整数)且卷积核的高和宽为2s,转置卷积核会将输入的高和宽分别放大s倍

这些公式适用于PyTorch中的卷积、池化和转置卷积层,可以根据具体的网络架构和参数进行计算。

注意,PyTorch中的卷积层和池化层通常作为nn.Conv2dnn.MaxPool2d等模块提供,参数传递方式也要根据实际情况来设置。

相关推荐
德迅云安全—珍珍5 小时前
2026 年网络安全预测:AI 全面融入实战的 100+行业洞察
人工智能·安全·web安全
cnxy1887 小时前
围棋对弈Python程序开发完整指南:步骤4 - 提子逻辑和劫争规则实现
开发语言·python·机器学习
数新网络7 小时前
CyberScheduler —— 打破数据调度边界的核心引擎
人工智能
TheSumSt7 小时前
Python丨课程笔记Part3:语法进阶部分(控制结构与基础数据结构)
数据结构·笔记·python
Codebee7 小时前
Ooder框架8步编码流程实战 - DSM组件UI统计模块深度解析
人工智能
ha_lydms8 小时前
5、Spark函数_s/t
java·大数据·python·spark·数据处理·maxcompute·spark 函数
Deepoch8 小时前
智能升级新范式:Deepoc开发板如何重塑康复辅具产业生态
人工智能·具身模型·deepoc·智能轮椅
赋创小助手8 小时前
融合与跃迁:NVIDIA、Groq 与下一代 AI 推理架构的博弈与机遇
服务器·人工智能·深度学习·神经网络·语言模型·自然语言处理·架构
静听松涛1338 小时前
多智能体协作中的通信协议演化
人工智能
基咯咯8 小时前
Google Health AI发布MedASR:Conformer 医疗语音识别如何服务临床口述与对话转写
人工智能