PyTorch中,卷积层、池化层、转置卷积层输出特征图形状计算公式总结

在PyTorch中,卷积层(Convolutional Layer)、池化层(Pooling Layer,例如最大池化层)、以及转置卷积层(Transpose Convolutional Layer,也称为反卷积层或上采样层)的输出特征图形状可以根据输入特征图的形状和各层的参数计算输出。

假设输入特征图的形状为 (in_channel, in_height, in_width),以下是各层输出特征图形状的计算公式:

1. 卷积层(Convolutional Layer)输出特征图形状计算公式:

py 复制代码
out_channel = 卷积核的数量
out_height  = (in_height + 2 * padding - kernel_size) / stride + 1
out_width   = (in_width  + 2 * padding - kernel_size) / stride + 1

2. 池化层(Pooling Layer)输出特征图形状计算公式:

py 复制代码
out_channel = in_channel
out_height  = (in_height - kernel_size) / stride + 1
out_width   = (in_width  - kernel_size) / stride + 1

3. 转置卷积层(Transpose Convolutional Layer)输出特征图形状计算公式:

py 复制代码
out_channel = 卷积核的数量
out_height  = stride * (in_height - 1) + kernel_size - 2 * padding
out_width   = stride * (in_width  - 1) + kernel_size - 2 * padding
csharp 复制代码
如果步幅为s,填充为s/2(假设s/2是整数)且卷积核的高和宽为2s,转置卷积核会将输入的高和宽分别放大s倍

这些公式适用于PyTorch中的卷积、池化和转置卷积层,可以根据具体的网络架构和参数进行计算。

注意,PyTorch中的卷积层和池化层通常作为nn.Conv2dnn.MaxPool2d等模块提供,参数传递方式也要根据实际情况来设置。

相关推荐
qq_527887872 分钟前
联邦经典算法Fedavg实现
人工智能·深度学习
天天讯通3 分钟前
数据公司与AI五大主流合作模式
人工智能
Clarence Liu20 分钟前
AI Agent开发(2) - 深入解析 A2A 协议与 Go 实战指南
开发语言·人工智能·golang
综合热讯23 分钟前
AUS GLOBAL 荣耀赞助 2026 LIL TOUR 高尔夫嘉年华
人工智能
忧郁的橙子.39 分钟前
26期_01_Pyhton基本语法
python
sunfove44 分钟前
实战篇:用 Python 徒手实现模拟退火算法解决 TSP 问题
开发语言·python·模拟退火算法
小饼干超人1 小时前
详解向量数据库中的PQ算法(Product Quantization)
人工智能·算法·机器学习
砚边数影1 小时前
AI数学基础(一):线性代数核心,向量/矩阵运算的Java实现
java·数据库·人工智能·线性代数·矩阵·ai编程·金仓数据库
互联网科技看点1 小时前
诸葛io获认可:金融分析智能体赛道领航者
大数据·人工智能·金融
engchina1 小时前
自然语言转 SQL 并不是“魔法”
数据库·人工智能·sql·text2sql·nl2sql·自然语言转sql