OpenCV之图片修复(inpaint)

图片修复基本原理: 我们自己标定噪声的特征,然后根据噪声周围区域的颜色特征修复噪声所在的区域。通俗一点就是用邻近的像素替换那些坏标记,使其看起来像是邻居。

如下图,需要将白色框框去掉:

标定噪声特征

先分析白色框框特征,白色区域的值大概处于[240, 240, 240]~[255, 255, 255]之间 图片中其他区域很少有这么高的像素值 所以我们可以把这个白色区域提取出来 表示为前景区域 然后对其膨胀

opencv给我们提供了一个api ,用cv2.inRange进行二值化处理,cv2.inRange 用法如下

把 low-up之间的值变为255 以外的值变成0

结果如下:

扩展噪声区域 优化处理效果

cv2.dliate

图像修复

直接用opencv的api cv2.inpaint函数 用法如下:

就是在原图基础上 把mask中前景区域部分的图像根据 flags指定的方法 进行修复

结果:

总的来说 这玩意主要是靠opencv里面cv2.inpaint这个函数实现.

代码

代码如下

复制代码
# 图片修复

import cv2
import numpy as np

path = "./6t.jpg"

img = cv2.imread(path)
hight, width, depth = img.shape[0:3]

# 图片二值化处理,把[240, 240, 240]~[255, 255, 255]以外的颜色变成0
thresh = cv2.inRange(img, np.array([240, 240, 240]), np.array([255, 255, 255]))
cv2.imshow("2", thresh)
# 创建形状和尺寸的结构元素
kernel = np.ones((5, 5), np.uint8)

# 扩张待修复区域
# dliate参数:原图 内核 腐蚀次数
hi_mask = cv2.dilate(thresh, kernel, iterations=1)
cv2.imshow("3", hi_mask)
# inpaint
specular = cv2.inpaint(img, hi_mask, 5, flags=cv2.INPAINT_TELEA)

cv2.namedWindow("Image", 0)
cv2.imshow("Image", img)

cv2.namedWindow("newImage", 0)
cv2.imshow("newImage", specular)
cv2.waitKey(0)
cv2.destroyAllWindows()
相关推荐
机器之心1 分钟前
华为新开源!扩散语言模型突破32K上下文,还解锁了「慢思考」
人工智能·openai
可触的未来,发芽的智生1 分钟前
微论-自成长系统引发的NLP新生
javascript·人工智能·python·程序人生·自然语言处理
阿里云大数据AI技术11 分钟前
PAI Physical AI Notebook 详解(5):基于 Isaac-Cortex 的软件在环验证
人工智能
冴羽20 分钟前
10 个 Nano Banana Pro 专业级生图技巧
前端·人工智能·aigc
晨非辰30 分钟前
算法闯关日记 Episode :解锁链表「环形」迷局与「相交」奥秘
数据结构·c++·人工智能·后端·python·深度学习·神经网络
老蒋新思维30 分钟前
创客匠人 2025 峰会深度解析:AI 赋能垂直领域,创始人 IP 变现的差异化路径
大数据·网络·人工智能·网络协议·tcp/ip·重构·知识付费
沛沛老爹31 分钟前
AI入门之LangChain Agent工具链组合设计:从理论到产业落地的AI智能体架构指南
人工智能·架构·langchain·agent·ai入门
摘星编程35 分钟前
解构CANN图编译技术:打造高吞吐、低延迟的实时AI质检系统
人工智能
8个贝壳1 小时前
开发者福音!一键聚合GPT-5.1、Claude 4.5:我的高性价比AI模型中转站实战分享
人工智能
liliangcsdn1 小时前
如何从二项分布中抽取样本 - binomial
大数据·人工智能