OpenCV之图片修复(inpaint)

图片修复基本原理: 我们自己标定噪声的特征,然后根据噪声周围区域的颜色特征修复噪声所在的区域。通俗一点就是用邻近的像素替换那些坏标记,使其看起来像是邻居。

如下图,需要将白色框框去掉:

标定噪声特征

先分析白色框框特征,白色区域的值大概处于[240, 240, 240]~[255, 255, 255]之间 图片中其他区域很少有这么高的像素值 所以我们可以把这个白色区域提取出来 表示为前景区域 然后对其膨胀

opencv给我们提供了一个api ,用cv2.inRange进行二值化处理,cv2.inRange 用法如下

把 low-up之间的值变为255 以外的值变成0

结果如下:

扩展噪声区域 优化处理效果

cv2.dliate

图像修复

直接用opencv的api cv2.inpaint函数 用法如下:

就是在原图基础上 把mask中前景区域部分的图像根据 flags指定的方法 进行修复

结果:

总的来说 这玩意主要是靠opencv里面cv2.inpaint这个函数实现.

代码

代码如下

复制代码
# 图片修复

import cv2
import numpy as np

path = "./6t.jpg"

img = cv2.imread(path)
hight, width, depth = img.shape[0:3]

# 图片二值化处理,把[240, 240, 240]~[255, 255, 255]以外的颜色变成0
thresh = cv2.inRange(img, np.array([240, 240, 240]), np.array([255, 255, 255]))
cv2.imshow("2", thresh)
# 创建形状和尺寸的结构元素
kernel = np.ones((5, 5), np.uint8)

# 扩张待修复区域
# dliate参数:原图 内核 腐蚀次数
hi_mask = cv2.dilate(thresh, kernel, iterations=1)
cv2.imshow("3", hi_mask)
# inpaint
specular = cv2.inpaint(img, hi_mask, 5, flags=cv2.INPAINT_TELEA)

cv2.namedWindow("Image", 0)
cv2.imshow("Image", img)

cv2.namedWindow("newImage", 0)
cv2.imshow("newImage", specular)
cv2.waitKey(0)
cv2.destroyAllWindows()
相关推荐
偷吃的耗子4 小时前
【CNN算法理解】:CNN平移不变性详解:数学原理与实例
人工智能·算法·cnn
勾股导航4 小时前
OpenCV图像坐标系
人工智能·opencv·计算机视觉
神的泪水4 小时前
CANN 生态实战:`msprof-performance-analyzer` 如何精准定位 AI 应用性能瓶颈
人工智能
芷栀夏4 小时前
深度解析 CANN 异构计算架构:基于 ACL API 的算子调用实战
运维·人工智能·开源·cann
威迪斯特4 小时前
项目解决方案:医药生产车间AI识别建设解决方案
人工智能·ai实时识别·视频实时识别·识别盒子·识别数据分析·项目解决方案
笔画人生4 小时前
# 探索 CANN 生态:深入解析 `ops-transformer` 项目
人工智能·深度学习·transformer
feasibility.4 小时前
AI 编程助手进阶指南:从 Claude Code 到 OpenCode 的工程化经验总结
人工智能·经验分享·设计模式·自动化·agi·skills·opencode
程序猿追4 小时前
深度剖析 CANN ops-nn 算子库:架构设计、演进与代码实现逻辑
人工智能·架构
灰灰勇闯IT4 小时前
领域制胜——CANN 领域加速库(ascend-transformer-boost)的场景化优化
人工智能·深度学习·transformer
灰灰勇闯IT4 小时前
从零到一——CANN 社区与 cann-recipes-infer 实践样例的启示
人工智能