管理类联考——数学——汇总篇——知识点突破——应用题——最值问题

⛲️

一、考点讲解

最值问题是应用题中最难的题目,也是考生普遍丢分的题目。最值问题一般要结合函数来分析,一般结合二次函数和平均值定理求解。最值问题的求解步骤是:先设未知变量,然后根据题目建立函数表达式,最后利用函数的特征求解最值。

二、考试解读

  1. 应用题的最值问题难度较大,而且计算量也略大,对于基础一般的考生,建议在考试中最后再做。
  2. 熟练掌握二次函数和平均值定理是求解最值问题的关键。
  3. 函数关系的建立是解题核心,所以要准确理解题意,建立函数表达式。
  4. 考试频率级别:中。

三、命题方向

  1. 二次函数求最值

    思路:如果出现二次函数,采用抛物线分析求解。

  2. 均值定理求最值

    思路:应用平均值定理分析,当和为定值时,乘积有最大值;当积为定值时,和有最小值,对于两个正数,也可记住公式: a + b ≥ 2 a b a+b≥2\sqrt{ab} a+b≥2ab 。

最值问题是应用题中最难的题目,也是考生普遍丢分的题目。最值问题一般要结合函数来分析,一般结合二次函数和平均值定理求解。

最值问题的求解步骤是:先设未知变量,然后根据题目建立函数表达式,接着利用函数的特征求解最值。

🌊

应用题与二次函数的综合求最值问题:主要利用二次函数的顶点公式求解,较为简单,注意定义域即可。

这种题目的出题模式非常固定:即这种题目通常以利润问题出现,然后问我们利润的取得最值时售价为多少。

出题模式很固定:

A.商品每上涨n元,少卖m件;

B.商品每下降n元,多卖m件;

固定解题思路:设上涨/下降x个n元。

🐟

模型识别 解题方法 备注
转化为一元二次函数求最值 列出符合题干的一元二次函数表达式,要注意对称轴是不是落在定义域内
转化为均值不等式求最值 使用均值不等式的口诀"一正二定三相等"
至多至少问题 常用极值法(如一个极大,其余极小;或者一个极小,其余极大)
[应用题的最值问题]

🐟

1.转化为一元二次函数求最值

解题方法

根据应用题的已知条件,设未知数,列出符合题干的一元二次函数的表达式,要注意对称轴是不是落在定义域内。

2.转化为均值不等式求最值

解题方法

如果题干中已知条件为和的定值,求积的最大值;或者已知条件为积的定值,求和的最小值,则一般考查均值不等式.使用均值不等式的口诀"一正二定三相等"。

3.转化为不等式求最值

4.至多至少问题

解题方法

至多至少问题,常用极值法(如一个极大,其余极小;或者一个极小,其余极大)。

相关推荐
星火开发设计21 小时前
C++ deque 全面解析与实战指南
java·开发语言·数据结构·c++·学习·知识
saoys21 小时前
Opencv 学习笔记:图像膨胀 / 腐蚀(附滑块动态调节腐蚀核大小)
笔记·opencv·学习
hhcccchh21 小时前
学习vue第十天 V-Model学习指南:双向绑定的魔法师
前端·vue.js·学习
专注于大数据技术栈1 天前
java学习--Collection的迭代器
java·python·学习
charliejohn1 天前
计算机考研 408 数据结构 树形查找 相关概念及计算题例题
数据结构·考研
气概1 天前
法奥机器人学习使用
学习·junit·机器人
Qhumaing1 天前
C++学习:【PTA】数据结构 7-1 实验7-1(最小生成树-Prim算法)
c++·学习·算法
好大哥呀1 天前
Java Web的学习路径
java·前端·学习
Heorine1 天前
408 计算机网络 知识点记忆(10)应用层(更新优化版本,版本2.0)
计算机网络·考研
梦雨羊1 天前
Base-NLP学习
人工智能·学习·自然语言处理