概率论与数理统计学习笔记(7)——全概率公式与贝叶斯公式

目录

  • [1. 背景](#1. 背景)
  • [2. 全概率公式](#2. 全概率公式)
  • [3. 贝叶斯公式](#3. 贝叶斯公式)

1. 背景

下图是本文的背景内容,小B休闲时间有80%的概率玩手机游戏,有20%的概率玩电脑游戏。这两个游戏都有抽卡环节,其中手游抽到金卡的概率为5%,端游抽到金卡的概率为15%。已知小B这天抽到了金卡,那么请问他是在手机上抽到的还是在电脑上抽到的?

2. 全概率公式

上述问题中,我们先考虑小B抽到金卡这件事的概率,设玩电脑的概率为 P ( c ) P(c) P(c),玩手机的概率为 P ( p ) P(p) P(p),抽到金卡的概率为 P ( v ) P(v) P(v):

  • 如果小B是在电脑上抽到的金卡,那么其概率为 P ( c ) P ( v ∣ c ) P(c)P(v|c) P(c)P(v∣c),就是玩电脑的概率乘上在电脑上抽到金卡的概率。
  • 如果小B是在手机上抽到的金卡,那么其概率为 P ( p ) P ( v ∣ p ) P(p)P(v|p) P(p)P(v∣p),就是玩手机的概率乘上在手机上抽到金卡的概率。

上面两个式子分别计算了在手机上抽到金卡和在电脑上抽到金卡的概率,那么两者加起来就是小B抽到金卡的概率,即: P ( v ) = P ( c ) P ( v ∣ c ) + P ( p ) P ( v ∣ p ) P(v)=P(c)P(v|c)+P(p)P(v|p) P(v)=P(c)P(v∣c)+P(p)P(v∣p)。这就是全概率公式,简单来说就是该事件在所有可能的情况下发生的概率。

用一个图来表示更直观,如下图所示,是一个长宽为1的正方形,其面积代表了所有事件发生的可能性。玩电脑占了20%的面积,玩手机占了80%的面积;玩电脑抽到金卡,占了玩电脑这块区域里面的15%;玩手机抽到金卡,占了玩手机这块区域里面的5%。

那么抽到金卡的概率,即:

3. 贝叶斯公式

知道了全概率公式后,就很容易理解贝叶斯公式了。贝叶斯公式是建立在我们已经知道结果的情况下,即我们知道小B已经抽到金卡的情况下,反推小B是玩电脑抽到金卡的概率和玩手机抽到金卡的概率。

那么玩电脑抽到金卡的概率可以用图表达为:

表达为数学公式为:
P ( c ∣ v ) = P ( c ) P ( v ∣ c ) P ( v ) P(c|v)=\frac{P(c)P(v|c)}{P(v)} P(c∣v)=P(v)P(c)P(v∣c)

同理,玩手机抽到金卡的概率可以用图表达为:

表达为数学公式为:
P ( p ∣ v ) = P ( p ) P ( v ∣ p ) P ( v ) P(p|v)=\frac{P(p)P(v|p)}{P(v)} P(p∣v)=P(v)P(p)P(v∣p)

这里 P ( p ∣ v ) P(p|v) P(p∣v) 和 P ( c ∣ v ) P(c|v) P(c∣v) 称之为后验概率(posterior),即我们知道了结果,反推过程发生的概率; P ( c ) P(c) P(c) 和 P ( p ) P(p) P(p) 称之为先验概率(prior),即我们还暂时不知道后面的情况,在知道之前事件发生的可能性; P ( v ∣ c ) P(v|c) P(v∣c) 和 P ( p ∣ c ) P(p|c) P(p∣c) 称之为似然(likelihood),即在某个情况下,事件发生的可能性。

相关推荐
港港胡说12 小时前
概率论-独立同分布
概率论
F_D_Z2 天前
【EM算法】三硬币模型
算法·机器学习·概率论·em算法·极大似然估计
金色光环6 天前
概率论:理解区间估计【超详细笔记】
笔记·数学·概率论·数理统计·区间估计
微小冷11 天前
二关节机器人系统模型推导
线性代数·机器人·概率论·推导·拉格朗日函数·二关节机器人·机器人控制系统的设计
软件开发技术深度爱好者12 天前
概率中“都发生”和“至少一个”问题的解答
概率论·数学广角
FF-Studio14 天前
【硬核数学】3. AI如何应对不确定性?概率论为模型注入“灵魂”《从零构建机器学习、深度学习到LLM的数学认知》
大数据·人工智能·深度学习·机器学习·数学建模·自然语言处理·概率论
如果你想拥有什么先让自己配得上拥有24 天前
概率论中的生日问题,违背直觉?如何计算? 以及从人性金融的角度分析如何违背直觉的?
金融·概率论
云博客-资源宝24 天前
Excel函数大全
机器学习·excel·概率论
爱学习的capoo1 个月前
【解析法与几何法在阻尼比设计】自控
线性代数·机器学习·概率论
TomcatLikeYou1 个月前
概率论中的基本定义(事件,期望,信息量,香农熵等)
深度学习·机器学习·概率论