概率论与数理统计学习笔记(7)——全概率公式与贝叶斯公式

目录

  • [1. 背景](#1. 背景)
  • [2. 全概率公式](#2. 全概率公式)
  • [3. 贝叶斯公式](#3. 贝叶斯公式)

1. 背景

下图是本文的背景内容,小B休闲时间有80%的概率玩手机游戏,有20%的概率玩电脑游戏。这两个游戏都有抽卡环节,其中手游抽到金卡的概率为5%,端游抽到金卡的概率为15%。已知小B这天抽到了金卡,那么请问他是在手机上抽到的还是在电脑上抽到的?

2. 全概率公式

上述问题中,我们先考虑小B抽到金卡这件事的概率,设玩电脑的概率为 P ( c ) P(c) P(c),玩手机的概率为 P ( p ) P(p) P(p),抽到金卡的概率为 P ( v ) P(v) P(v):

  • 如果小B是在电脑上抽到的金卡,那么其概率为 P ( c ) P ( v ∣ c ) P(c)P(v|c) P(c)P(v∣c),就是玩电脑的概率乘上在电脑上抽到金卡的概率。
  • 如果小B是在手机上抽到的金卡,那么其概率为 P ( p ) P ( v ∣ p ) P(p)P(v|p) P(p)P(v∣p),就是玩手机的概率乘上在手机上抽到金卡的概率。

上面两个式子分别计算了在手机上抽到金卡和在电脑上抽到金卡的概率,那么两者加起来就是小B抽到金卡的概率,即: P ( v ) = P ( c ) P ( v ∣ c ) + P ( p ) P ( v ∣ p ) P(v)=P(c)P(v|c)+P(p)P(v|p) P(v)=P(c)P(v∣c)+P(p)P(v∣p)。这就是全概率公式,简单来说就是该事件在所有可能的情况下发生的概率。

用一个图来表示更直观,如下图所示,是一个长宽为1的正方形,其面积代表了所有事件发生的可能性。玩电脑占了20%的面积,玩手机占了80%的面积;玩电脑抽到金卡,占了玩电脑这块区域里面的15%;玩手机抽到金卡,占了玩手机这块区域里面的5%。

那么抽到金卡的概率,即:

3. 贝叶斯公式

知道了全概率公式后,就很容易理解贝叶斯公式了。贝叶斯公式是建立在我们已经知道结果的情况下,即我们知道小B已经抽到金卡的情况下,反推小B是玩电脑抽到金卡的概率和玩手机抽到金卡的概率。

那么玩电脑抽到金卡的概率可以用图表达为:

表达为数学公式为:
P ( c ∣ v ) = P ( c ) P ( v ∣ c ) P ( v ) P(c|v)=\frac{P(c)P(v|c)}{P(v)} P(c∣v)=P(v)P(c)P(v∣c)

同理,玩手机抽到金卡的概率可以用图表达为:

表达为数学公式为:
P ( p ∣ v ) = P ( p ) P ( v ∣ p ) P ( v ) P(p|v)=\frac{P(p)P(v|p)}{P(v)} P(p∣v)=P(v)P(p)P(v∣p)

这里 P ( p ∣ v ) P(p|v) P(p∣v) 和 P ( c ∣ v ) P(c|v) P(c∣v) 称之为后验概率(posterior),即我们知道了结果,反推过程发生的概率; P ( c ) P(c) P(c) 和 P ( p ) P(p) P(p) 称之为先验概率(prior),即我们还暂时不知道后面的情况,在知道之前事件发生的可能性; P ( v ∣ c ) P(v|c) P(v∣c) 和 P ( p ∣ c ) P(p|c) P(p∣c) 称之为似然(likelihood),即在某个情况下,事件发生的可能性。

相关推荐
AI科技星2 天前
张祥前统一场论核心场方程的经典验证-基于电子与质子的求导溯源及力的精确计算
线性代数·算法·机器学习·矩阵·概率论
Fleshy数模2 天前
从一条直线开始:线性回归的底层逻辑与实战
人工智能·机器学习·概率论
seeInfinite4 天前
面试常见数学概率题
概率论
木非哲5 天前
AB实验必修课(一):线性回归的深度重构与稳定性评估
线性回归·概率论·abtest
大江东去浪淘尽千古风流人物7 天前
【LingBot-Depth】Masked Depth Modeling for Spatial Perception
人工智能·算法·机器学习·概率论
闪闪发亮的小星星8 天前
主旋参数定义
算法·机器学习·概率论
辰尘_星启10 天前
[最优控制]MPC模型预测控制
线性代数·机器学习·机器人·概率论·控制·现代控制
passxgx11 天前
12.1 均值、方差与概率
算法·均值算法·概率论
Cathy Bryant11 天前
softmax函数与logits
笔记·神经网络·机器学习·概率论·信息与通信
墨上烟雨11 天前
古典概型与几何概型
概率论