概率论与数理统计学习笔记(7)——全概率公式与贝叶斯公式

目录

  • [1. 背景](#1. 背景)
  • [2. 全概率公式](#2. 全概率公式)
  • [3. 贝叶斯公式](#3. 贝叶斯公式)

1. 背景

下图是本文的背景内容,小B休闲时间有80%的概率玩手机游戏,有20%的概率玩电脑游戏。这两个游戏都有抽卡环节,其中手游抽到金卡的概率为5%,端游抽到金卡的概率为15%。已知小B这天抽到了金卡,那么请问他是在手机上抽到的还是在电脑上抽到的?

2. 全概率公式

上述问题中,我们先考虑小B抽到金卡这件事的概率,设玩电脑的概率为 P ( c ) P(c) P(c),玩手机的概率为 P ( p ) P(p) P(p),抽到金卡的概率为 P ( v ) P(v) P(v):

  • 如果小B是在电脑上抽到的金卡,那么其概率为 P ( c ) P ( v ∣ c ) P(c)P(v|c) P(c)P(v∣c),就是玩电脑的概率乘上在电脑上抽到金卡的概率。
  • 如果小B是在手机上抽到的金卡,那么其概率为 P ( p ) P ( v ∣ p ) P(p)P(v|p) P(p)P(v∣p),就是玩手机的概率乘上在手机上抽到金卡的概率。

上面两个式子分别计算了在手机上抽到金卡和在电脑上抽到金卡的概率,那么两者加起来就是小B抽到金卡的概率,即: P ( v ) = P ( c ) P ( v ∣ c ) + P ( p ) P ( v ∣ p ) P(v)=P(c)P(v|c)+P(p)P(v|p) P(v)=P(c)P(v∣c)+P(p)P(v∣p)。这就是全概率公式,简单来说就是该事件在所有可能的情况下发生的概率。

用一个图来表示更直观,如下图所示,是一个长宽为1的正方形,其面积代表了所有事件发生的可能性。玩电脑占了20%的面积,玩手机占了80%的面积;玩电脑抽到金卡,占了玩电脑这块区域里面的15%;玩手机抽到金卡,占了玩手机这块区域里面的5%。

那么抽到金卡的概率,即:

3. 贝叶斯公式

知道了全概率公式后,就很容易理解贝叶斯公式了。贝叶斯公式是建立在我们已经知道结果的情况下,即我们知道小B已经抽到金卡的情况下,反推小B是玩电脑抽到金卡的概率和玩手机抽到金卡的概率。

那么玩电脑抽到金卡的概率可以用图表达为:

表达为数学公式为:
P ( c ∣ v ) = P ( c ) P ( v ∣ c ) P ( v ) P(c|v)=\frac{P(c)P(v|c)}{P(v)} P(c∣v)=P(v)P(c)P(v∣c)

同理,玩手机抽到金卡的概率可以用图表达为:

表达为数学公式为:
P ( p ∣ v ) = P ( p ) P ( v ∣ p ) P ( v ) P(p|v)=\frac{P(p)P(v|p)}{P(v)} P(p∣v)=P(v)P(p)P(v∣p)

这里 P ( p ∣ v ) P(p|v) P(p∣v) 和 P ( c ∣ v ) P(c|v) P(c∣v) 称之为后验概率(posterior),即我们知道了结果,反推过程发生的概率; P ( c ) P(c) P(c) 和 P ( p ) P(p) P(p) 称之为先验概率(prior),即我们还暂时不知道后面的情况,在知道之前事件发生的可能性; P ( v ∣ c ) P(v|c) P(v∣c) 和 P ( p ∣ c ) P(p|c) P(p∣c) 称之为似然(likelihood),即在某个情况下,事件发生的可能性。

相关推荐
明月照山海-2 天前
机器学习周报十三
人工智能·机器学习·概率论
北京地铁1号线2 天前
概率统计面试题1:随机抛掷的点到圆心距离的期望
概率论
ratbag6720133 天前
概率论与数理统计专业重点学哪些知识?
概率论
Yingjun Mo3 天前
1. 统计推断-基于神经网络与Langevin扩散的自适应潜变量建模与优化
人工智能·神经网络·算法·机器学习·概率论
图先3 天前
概率论第五讲—大数定律与中心极限定理
概率论
图先7 天前
概率论第六讲—数理统计
概率论
西猫雷婶8 天前
scikit-learn/sklearn学习|广义线性回归损失函数的基本表达式
深度学习·神经网络·学习·机器学习·线性回归·scikit-learn·概率论
xz2024102****10 天前
最大似然估计:损失函数的底层数学原理
人工智能·算法·机器学习·概率论
kingmax5421200810 天前
概率与数理统计公式及结论汇总
人工智能·机器学习·概率论
西猫雷婶11 天前
神经网络|(十九)概率论基础知识-伽马函数·下
人工智能·深度学习·神经网络·机器学习·回归·scikit-learn·概率论