【DP】最长上升子序列

一.定义

最长上升子序列(Longest Increasing Subsequence,简称LIS)是一个在数列中寻找一个子序列,使得这个子序列中的元素按照升序/降序排列,并且长度最长


二.例题引入

P1020 [NOIP1999 普及组] 导弹拦截 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn)

我们暂且只考虑第一问


三.分析


四.解法一(O(n^2))

即两重for循环,暴力即可

cpp 复制代码
#include<bits/stdc++.h>
#define maxn 10005
using namespace std;
int a[maxn];
int dp[maxn];
int n,ans;
int main(){
	while(~scanf("%d",&a[++n])); --n;
	for(int i=1;i<=n;i++){
		dp[i]=1;
		for(int j=1;j<=n;j++){
			if(a[j]>a[i] && dp[j]+1>dp[i]){
				dp[i]=dp[j]+1;
			}
		}
		ans=max(ans,dp[i]);
	}
	cout<<ans;
	return 0;
}

五.解法二(O(n logn))

这里我们用最长上升子序列的思维。我只演示过程,数学证明方法是Dilworth 定理,自行查阅。

cpp 复制代码
#include<bits/stdc++.h>
#define maxn 10005
using namespace std;
int a[maxn];
int dp[maxn];
int n,ans;
int top;
int Find(int x){
	int l=1,r=top;
	int mid;
	int ans;
	while(l<=r){
		mid=(l+r)>>1;
		if(dp[mid]<=x){
			ans=mid;
			r=mid-1;
		}else{
			l=mid+1;
		}
	}
	return ans;
}
int main(){
	while(~scanf("%d",&a[++n])); --n;
	dp[++top]=a[1];
	for(int i=2;i<=n;i++){
		if(a[i]<dp[top]) dp[++top]=a[i];
		else{
			int x=Find(a[i]);
			dp[x]=a[i];
		}
	}
	printf("%d",top);
	return 0;
}
相关推荐
无敌最俊朗@8 小时前
力扣hot100-206反转链表
算法·leetcode·链表
Kuo-Teng9 小时前
LeetCode 279: Perfect Squares
java·数据结构·算法·leetcode·职场和发展
王哈哈^_^9 小时前
YOLO11实例分割训练任务——从构建数据集到训练的完整教程
人工智能·深度学习·算法·yolo·目标检测·机器学习·计算机视觉
檐下翻书1739 小时前
从入门到精通:流程图制作学习路径规划
论文阅读·人工智能·学习·算法·流程图·论文笔记
CoderYanger9 小时前
B.双指针——3194. 最小元素和最大元素的最小平均值
java·开发语言·数据结构·算法·leetcode·职场和发展·1024程序员节
小曹要微笑11 小时前
STM32各系列时钟树详解
c语言·stm32·单片机·嵌入式硬件·算法
前进的李工12 小时前
LeetCode hot100:094 二叉树的中序遍历:从递归到迭代的完整指南
python·算法·leetcode·链表·二叉树
麦麦大数据12 小时前
F049 知识图谱双算法推荐在线学习系统vue+flask+neo4j之BS架构开题论文全源码
学习·算法·知识图谱·推荐算法·开题报告·学习系统·计算机毕业设计展示
兩尛13 小时前
215. 数组中的第K个最大元素
数据结构·算法·排序算法
9523613 小时前
数据结构-堆
java·数据结构·学习·算法