【DP】最长上升子序列

一.定义

最长上升子序列(Longest Increasing Subsequence,简称LIS)是一个在数列中寻找一个子序列,使得这个子序列中的元素按照升序/降序排列,并且长度最长


二.例题引入

P1020 [NOIP1999 普及组] 导弹拦截 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn)

我们暂且只考虑第一问


三.分析


四.解法一(O(n^2))

即两重for循环,暴力即可

cpp 复制代码
#include<bits/stdc++.h>
#define maxn 10005
using namespace std;
int a[maxn];
int dp[maxn];
int n,ans;
int main(){
	while(~scanf("%d",&a[++n])); --n;
	for(int i=1;i<=n;i++){
		dp[i]=1;
		for(int j=1;j<=n;j++){
			if(a[j]>a[i] && dp[j]+1>dp[i]){
				dp[i]=dp[j]+1;
			}
		}
		ans=max(ans,dp[i]);
	}
	cout<<ans;
	return 0;
}

五.解法二(O(n logn))

这里我们用最长上升子序列的思维。我只演示过程,数学证明方法是Dilworth 定理,自行查阅。

cpp 复制代码
#include<bits/stdc++.h>
#define maxn 10005
using namespace std;
int a[maxn];
int dp[maxn];
int n,ans;
int top;
int Find(int x){
	int l=1,r=top;
	int mid;
	int ans;
	while(l<=r){
		mid=(l+r)>>1;
		if(dp[mid]<=x){
			ans=mid;
			r=mid-1;
		}else{
			l=mid+1;
		}
	}
	return ans;
}
int main(){
	while(~scanf("%d",&a[++n])); --n;
	dp[++top]=a[1];
	for(int i=2;i<=n;i++){
		if(a[i]<dp[top]) dp[++top]=a[i];
		else{
			int x=Find(a[i]);
			dp[x]=a[i];
		}
	}
	printf("%d",top);
	return 0;
}
相关推荐
int型码农1 小时前
数据结构第八章(二)-交换排序
c语言·数据结构·算法·排序算法
YKPG1 小时前
C++学习-入门到精通【14】标准库算法
c++·学习·算法
CoovallyAIHub1 小时前
AI+无人机如何守护濒危物种?YOLOv8实现95%精准识别
深度学习·算法·计算机视觉
码农之王2 小时前
记录一次,利用AI DeepSeek,解决工作中算法和无限级树模型问题
后端·算法
编程绿豆侠4 小时前
力扣HOT100之二分查找: 34. 在排序数组中查找元素的第一个和最后一个位置
数据结构·算法·leetcode
Shan12054 小时前
找到每一个单词+模拟的思路和算法
数据结构·算法
国家不保护废物5 小时前
微信红包算法深度解析:从产品思维到代码实现
javascript·算法·面试
小明同学015 小时前
[C++入门]简化的艺术---对模版的初步探索
开发语言·c++·算法
kaiaaaa6 小时前
算法训练第八天
算法
LL_xjbt6 小时前
代码随想录刷题day29
算法·leetcode·动态规划