【DP】最长上升子序列

一.定义

最长上升子序列(Longest Increasing Subsequence,简称LIS)是一个在数列中寻找一个子序列,使得这个子序列中的元素按照升序/降序排列,并且长度最长


二.例题引入

P1020 [NOIP1999 普及组] 导弹拦截 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn)

我们暂且只考虑第一问


三.分析


四.解法一(O(n^2))

即两重for循环,暴力即可

cpp 复制代码
#include<bits/stdc++.h>
#define maxn 10005
using namespace std;
int a[maxn];
int dp[maxn];
int n,ans;
int main(){
	while(~scanf("%d",&a[++n])); --n;
	for(int i=1;i<=n;i++){
		dp[i]=1;
		for(int j=1;j<=n;j++){
			if(a[j]>a[i] && dp[j]+1>dp[i]){
				dp[i]=dp[j]+1;
			}
		}
		ans=max(ans,dp[i]);
	}
	cout<<ans;
	return 0;
}

五.解法二(O(n logn))

这里我们用最长上升子序列的思维。我只演示过程,数学证明方法是Dilworth 定理,自行查阅。

cpp 复制代码
#include<bits/stdc++.h>
#define maxn 10005
using namespace std;
int a[maxn];
int dp[maxn];
int n,ans;
int top;
int Find(int x){
	int l=1,r=top;
	int mid;
	int ans;
	while(l<=r){
		mid=(l+r)>>1;
		if(dp[mid]<=x){
			ans=mid;
			r=mid-1;
		}else{
			l=mid+1;
		}
	}
	return ans;
}
int main(){
	while(~scanf("%d",&a[++n])); --n;
	dp[++top]=a[1];
	for(int i=2;i<=n;i++){
		if(a[i]<dp[top]) dp[++top]=a[i];
		else{
			int x=Find(a[i]);
			dp[x]=a[i];
		}
	}
	printf("%d",top);
	return 0;
}
相关推荐
yuanbenshidiaos1 小时前
C++----------函数的调用机制
java·c++·算法
唐叔在学习1 小时前
【唐叔学算法】第21天:超越比较-计数排序、桶排序与基数排序的Java实践及性能剖析
数据结构·算法·排序算法
ALISHENGYA1 小时前
全国青少年信息学奥林匹克竞赛(信奥赛)备考实战之分支结构(switch语句)
数据结构·算法
chengooooooo1 小时前
代码随想录训练营第二十七天| 贪心理论基础 455.分发饼干 376. 摆动序列 53. 最大子序和
算法·leetcode·职场和发展
jackiendsc1 小时前
Java的垃圾回收机制介绍、工作原理、算法及分析调优
java·开发语言·算法
苓诣2 小时前
不同路径
动态规划
游是水里的游3 小时前
【算法day20】回溯:子集与全排列问题
算法
yoyobravery3 小时前
c语言大一期末复习
c语言·开发语言·算法
Jiude3 小时前
算法题题解记录——双变量问题的 “枚举右,维护左”
python·算法·面试
被AI抢饭碗的人3 小时前
算法题(13):异或变换
算法