【DP】最长上升子序列

一.定义

最长上升子序列(Longest Increasing Subsequence,简称LIS)是一个在数列中寻找一个子序列,使得这个子序列中的元素按照升序/降序排列,并且长度最长


二.例题引入

P1020 [NOIP1999 普及组] 导弹拦截 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn)

我们暂且只考虑第一问


三.分析


四.解法一(O(n^2))

即两重for循环,暴力即可

cpp 复制代码
#include<bits/stdc++.h>
#define maxn 10005
using namespace std;
int a[maxn];
int dp[maxn];
int n,ans;
int main(){
	while(~scanf("%d",&a[++n])); --n;
	for(int i=1;i<=n;i++){
		dp[i]=1;
		for(int j=1;j<=n;j++){
			if(a[j]>a[i] && dp[j]+1>dp[i]){
				dp[i]=dp[j]+1;
			}
		}
		ans=max(ans,dp[i]);
	}
	cout<<ans;
	return 0;
}

五.解法二(O(n logn))

这里我们用最长上升子序列的思维。我只演示过程,数学证明方法是Dilworth 定理,自行查阅。

cpp 复制代码
#include<bits/stdc++.h>
#define maxn 10005
using namespace std;
int a[maxn];
int dp[maxn];
int n,ans;
int top;
int Find(int x){
	int l=1,r=top;
	int mid;
	int ans;
	while(l<=r){
		mid=(l+r)>>1;
		if(dp[mid]<=x){
			ans=mid;
			r=mid-1;
		}else{
			l=mid+1;
		}
	}
	return ans;
}
int main(){
	while(~scanf("%d",&a[++n])); --n;
	dp[++top]=a[1];
	for(int i=2;i<=n;i++){
		if(a[i]<dp[top]) dp[++top]=a[i];
		else{
			int x=Find(a[i]);
			dp[x]=a[i];
		}
	}
	printf("%d",top);
	return 0;
}
相关推荐
一念&5 小时前
每日一个C语言知识:C 头文件
c语言·开发语言·算法
Miraitowa_cheems8 小时前
LeetCode算法日记 - Day 88: 环绕字符串中唯一的子字符串
java·数据结构·算法·leetcode·深度优先·动态规划
B站_计算机毕业设计之家9 小时前
python电商商品评论数据分析可视化系统 爬虫 数据采集 Flask框架 NLP情感分析 LDA主题分析 Bayes评论分类(源码) ✅
大数据·hadoop·爬虫·python·算法·数据分析·1024程序员节
小白菜又菜10 小时前
Leetcode 1518. Water Bottles
算法·leetcode·职场和发展
长存祈月心10 小时前
Rust Option 与 Result深度解析
算法
杭州杭州杭州10 小时前
机器学习(3)---线性算法,决策树,神经网络,支持向量机
算法·决策树·机器学习
不语n12 小时前
快速排序(Quick Sort)详解与图解
数据结构·算法·排序算法·快速排序·双指针排序
电鱼智能的电小鱼12 小时前
基于电鱼 ARM 工控机的AI视频智能分析方案:让传统监控变得更聪明
网络·arm开发·人工智能·嵌入式硬件·算法·音视频
初学者,亦行者12 小时前
Rust性能优化:内存对齐与缓存友好实战
算法·rust