torch.from_numpy()函数(pytorch版)

torch.from_numpy(ndarray) 的作用就是将生成的数组(array)转换为张量Tensor。

该方法等同于torch.Tensor(ndarray)。

举例说明:

单纯的torch.from_numpy(ndarray)方法。

复制代码
import numpy
import torch

data1 = numpy.array([5, 6, 9])
print('data1的数据类型为:', type(data1))
print('data1的值为:', data1)

data2 = torch.from_numpy(data1)
print('data2的数据类型为:', type(data2))
print('data2的值为:', data2)

data2[1] = 3
print('data2的数据类型为:', type(data2))
print('data2的值为:', data2)

结果输出:

复制代码
data1的数据类型为: <class 'numpy.ndarray'>
data1的值为: [5 6 9]
data2的数据类型为: <class 'torch.Tensor'>
data2的值为: tensor([5, 6, 9], dtype=torch.int32)
data2的数据类型为: <class 'torch.Tensor'>
data2的值为: tensor([5, 3, 9], dtype=torch.int32)

使用torch.Tensor(ndarray)方法:

复制代码
import numpy
import torch

data1 = numpy.array([5, 6, 9])
print('data1的数据类型为:', type(data1))
print('data1的值为:', data1)

data3 = torch.Tensor(data1)
print('data3的数据类型为:', type(data3))
print('data3的值为:', data3)

输出结果:

复制代码
data1的数据类型为: <class 'numpy.ndarray'>
data1的值为: [5 6 9]
data2的数据类型为: <class 'torch.Tensor'>
data2的值为: tensor([5., 6., 9.])
相关推荐
Narrastory9 小时前
拆解指数加权平均:5 分钟看懂机器学习的 “数据平滑神器”
人工智能·机器学习
SelectDB9 小时前
慢 SQL 诊断准确率 99.99%,天翼云基于 Apache Doris MCP 的 AI 智能运维实践
数据库·人工智能·apache
王中阳Go9 小时前
05 Go Eino AI应用开发实战 | Docker 部署指南
人工智能·后端·go
腾讯云开发者9 小时前
当10年架构师拿起AI:不是写不动了,是写得太快了
人工智能
小马过河R9 小时前
RAG检索增强生成:通过重排序提升AI信息检索精准度
人工智能·语言模型
不惑_9 小时前
通俗理解卷积神经网络
人工智能·windows·python·深度学习·机器学习
rayufo10 小时前
自定义数据在深度学习中的应用方法
人工智能·深度学习
梦帮科技10 小时前
量子计算+AI:下一代智能的终极形态?(第一部分)
人工智能·python·神经网络·深度优先·量子计算·模拟退火算法
山海青风10 小时前
藏文TTS介绍:6 MMS 项目的多语言 TTS
人工智能·python·神经网络·音视频
人工智能培训10 小时前
DNN案例一步步构建深层神经网络(3)
人工智能·深度学习·神经网络·大模型·dnn·具身智能·智能体