torch.from_numpy()函数(pytorch版)

torch.from_numpy(ndarray) 的作用就是将生成的数组(array)转换为张量Tensor。

该方法等同于torch.Tensor(ndarray)。

举例说明:

单纯的torch.from_numpy(ndarray)方法。

复制代码
import numpy
import torch

data1 = numpy.array([5, 6, 9])
print('data1的数据类型为:', type(data1))
print('data1的值为:', data1)

data2 = torch.from_numpy(data1)
print('data2的数据类型为:', type(data2))
print('data2的值为:', data2)

data2[1] = 3
print('data2的数据类型为:', type(data2))
print('data2的值为:', data2)

结果输出:

复制代码
data1的数据类型为: <class 'numpy.ndarray'>
data1的值为: [5 6 9]
data2的数据类型为: <class 'torch.Tensor'>
data2的值为: tensor([5, 6, 9], dtype=torch.int32)
data2的数据类型为: <class 'torch.Tensor'>
data2的值为: tensor([5, 3, 9], dtype=torch.int32)

使用torch.Tensor(ndarray)方法:

复制代码
import numpy
import torch

data1 = numpy.array([5, 6, 9])
print('data1的数据类型为:', type(data1))
print('data1的值为:', data1)

data3 = torch.Tensor(data1)
print('data3的数据类型为:', type(data3))
print('data3的值为:', data3)

输出结果:

复制代码
data1的数据类型为: <class 'numpy.ndarray'>
data1的值为: [5 6 9]
data2的数据类型为: <class 'torch.Tensor'>
data2的值为: tensor([5., 6., 9.])
相关推荐
机器之心24 分钟前
真机RL!最强VLA模型π*0.6来了,机器人在办公室开起咖啡厅
人工智能·openai
机器之心24 分钟前
马斯克Grok 4.1低调发布!通用能力碾压其他一切模型
人工智能·openai
一水鉴天32 分钟前
整体设计 全面梳理复盘 之39 生态工具链 到顶级表征及其完全公理化
大数据·人工智能·算法
小和尚同志1 小时前
本地 AI Code Review 探索及落地
人工智能·aigc
Juchecar1 小时前
视觉分层,对人工神经网络的启示
人工智能
Juchecar2 小时前
解析视觉:视觉识别的七层模型
人工智能
醒过来摸鱼2 小时前
9.8 贝塞尔曲线
线性代数·算法·numpy
Juchecar2 小时前
解析视觉:大脑如何“辨别”美丑?
人工智能
老蒋新思维2 小时前
紧跟郑滢轩,以 “学习力 +” 驱动 AI 与 IP 商业变革
网络·人工智能·学习·tcp/ip·企业管理·创始人ip·创客匠人