torch.from_numpy()函数(pytorch版)

torch.from_numpy(ndarray) 的作用就是将生成的数组(array)转换为张量Tensor。

该方法等同于torch.Tensor(ndarray)。

举例说明:

单纯的torch.from_numpy(ndarray)方法。

复制代码
import numpy
import torch

data1 = numpy.array([5, 6, 9])
print('data1的数据类型为:', type(data1))
print('data1的值为:', data1)

data2 = torch.from_numpy(data1)
print('data2的数据类型为:', type(data2))
print('data2的值为:', data2)

data2[1] = 3
print('data2的数据类型为:', type(data2))
print('data2的值为:', data2)

结果输出:

复制代码
data1的数据类型为: <class 'numpy.ndarray'>
data1的值为: [5 6 9]
data2的数据类型为: <class 'torch.Tensor'>
data2的值为: tensor([5, 6, 9], dtype=torch.int32)
data2的数据类型为: <class 'torch.Tensor'>
data2的值为: tensor([5, 3, 9], dtype=torch.int32)

使用torch.Tensor(ndarray)方法:

复制代码
import numpy
import torch

data1 = numpy.array([5, 6, 9])
print('data1的数据类型为:', type(data1))
print('data1的值为:', data1)

data3 = torch.Tensor(data1)
print('data3的数据类型为:', type(data3))
print('data3的值为:', data3)

输出结果:

复制代码
data1的数据类型为: <class 'numpy.ndarray'>
data1的值为: [5 6 9]
data2的数据类型为: <class 'torch.Tensor'>
data2的值为: tensor([5., 6., 9.])
相关推荐
isNotNullX11 分钟前
实时数仓和离线数仓还分不清楚?看完就懂了
大数据·数据库·数据仓库·人工智能·数据分析
Liudef0621 分钟前
大语言模型的极限:知识、推理与创造力的边界探析
人工智能·语言模型·自然语言处理
潮湿的心情27 分钟前
亚洲牧原:活跃行业交流,延伸公益版图,市场拓展再结硕果
大数据·人工智能
平和男人杨争争28 分钟前
机器学习14——线性回归
人工智能·机器学习·线性回归
一个天蝎座 白勺 程序猿40 分钟前
飞算JavaAI进阶:重塑Java开发范式的AI革命
java·开发语言·人工智能
李昊哲小课1 小时前
pandas销售数据分析
人工智能·python·数据挖掘·数据分析·pandas
whabc1002 小时前
和鲸社区深度学习基础训练营2025年关卡2(2)sklearn中的MLPClassifier
人工智能·深度学习·numpy
往日情怀酿做酒 V17639296382 小时前
pytorch的介绍以及张量的创建
人工智能·pytorch·python
北辰alk2 小时前
如何实现AI多轮对话功能及解决对话记忆持久化问题
人工智能
智驱力人工智能2 小时前
极端高温下的智慧出行:危险检测与救援
人工智能·算法·安全·行为识别·智能巡航·高温预警·高温监测