OpenCV 04(通道分离与合并 | 绘制图形)

一、通道的分离与合并

  • split(mat)分割图像的通道

  • merge((ch1,ch2, ch3)) 融合多个通道

python 复制代码
import cv2
import numpy as np

img = np.zeros((480, 640, 3), np.uint8)

b,g,r = cv2.split(img)

b[10:100, 10:100] = 255
g[10:100, 10:100] = 255

img2 = cv2.merge((b, g, r))

cv2.imshow('img', img)
cv2.imshow('b', b)
cv2.imshow('g', g)
cv2.imshow('img2', img2)

cv2.waitKey(0)
cv2.destroyAllWindows()

二、绘制图形

利用OpenCV提供的绘制图形API可以轻松在图像上绘制各种图形, 比如直线, 矩形, 圆, 椭圆等图形.

  • line(img, pt1, pt2, color, thickness, lineType, shift) 画直线

  • img: 在哪个图像上画线

  • pt1, pt2: 开始点, 结束点. 指定线的开始与结束位置

  • color: 颜色

  • thickness: 线宽

  • lineType: 线型.线型为-1, 4, 8, 16, 默认为8

  • shift: 坐标缩放比例.

  • rectangle() 参数同上 画矩形

  • circle(img, center, radius, color, thickness, lineType, shift) 中括号内参数表示可选参数. 画圆

  • ellipse(img, 中心点, 长宽的一半, 角度, 从哪个角度开始, 从哪个角度结束,...)

  • polylines(img, pts, isClosed, color, thickness, lineType, shift) 画多边形

  • fillPoly 填充多边形

  • putText(img, text, org, fontFace, fontScale, color, thickness, lineType, shift) 绘制文本

  • text 要绘制的文本

  • org 文本在图片中的左下角坐标

  • fontFace 字体类型即字体

  • fontScale 字体大小

python 复制代码
import cv2
import numpy as np

img = np.zeros((480, 640, 3), np.uint8)
# cv2.line(img, (10, 20), (300, 400), (0, 0, 255), 5, 4)
# cv2.line(img, (80, 100), (380, 480), (0, 0, 255), 5, 16)

# 画矩形
# cv2.rectangle(img, (10,10), (100, 100), (0, 0, 255), -1)

# 画圆
# cv2.circle(img, (320, 240), 100, (0, 0, 255))
# cv2.circle(img, (320, 240), 5, (0, 0, 255), -1)
# 画椭圆
# cv2.ellipse(img, (320, 240), (100, 50), 15, 0, 360, (0, 0, 255), -1)

#画多边形
# pts = np.array([(300, 10), (150, 100), (450, 100)], np.int32)
# cv2.polylines(img, [pts], True, (0, 0, 255))

#填充多边形
# cv2.fillPoly(img, [pts], (255, 255, 0))

cv2.putText(img, "Hello OpenCV!", (10, 400), cv2.FONT_HERSHEY_TRIPLEX, 3, (255,0,0))
cv2.imshow('draw', img)
cv2.waitKey(0)
cv2.destroyAllWindows()
  • 绘制中文 opencv本身不支持, 因为没有中文字体.我们可以借助pillow来实现绘制中文
python 复制代码
 # 安装pillow
  import cv2
  import numpy as np
  from PIL import ImageFont, ImageDraw, Image
  
  img = np.full((200, 200, 3), fill_value=255, dtype=np.uint8)
  # 导入字体文件. 
  font_path = 'msyhbd.ttc'
  font = ImageFont.truetype(font_path, 15)
  img_pil = Image.fromarray(img)
  draw = ImageDraw.Draw(img_pil)
  draw.text((10, 150), '绘制中文', font=font, fill=(0, 255, 0, 0))
  img = np.array(img_pil)
  
  # 中文会显示问号
  cv2.putText(img, '中文', (10, 100), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0), 1)
  
  cv2.imshow('img', img)
  cv2.waitKey(0)
  cv2.destroyAllWindows()
相关推荐
独自归家的兔1 分钟前
通义千问3-VL-Plus - 界面交互(本地图片)
人工智能·交互
棒棒的皮皮4 分钟前
【OpenCV】Python图像处理几何变换之透视
图像处理·python·opencv·计算机视觉
adaAS14143159 分钟前
YOLO11-ReCalibrationFPN-P345实现酒液品牌识别与分类_1
人工智能·分类·数据挖掘
AEMC马广川10 分钟前
能源托管项目中“企业认证+人才证书”双轨评分策略分析
大数据·运维·人工智能·能源
鲸采云SRM采购管理系统11 分钟前
2025采购管理系统新趋势解读:AI与自动化正当时
人工智能
weixin_4481199413 分钟前
不要将包含API密钥的 .env 文件提交到版本控制系统中
人工智能
北京耐用通信19 分钟前
解码协议迷雾:耐达讯自动化Profinet转Devicenet让食品包装称重模块“跨界对话”的魔法
人工智能·物联网·网络协议·自动化·信息与通信
塔楼24 分钟前
MiniCPM-V 4.5
人工智能·深度学习
猫天意27 分钟前
【即插即用模块】AAAI2025 | 高频 + 空间感知!新 HS-FPN 让“极小目标”不再消失!SCI保二区争一区!彻底疯狂!!!
网络·人工智能·深度学习·学习·音视频
罗小罗同学27 分钟前
基于虚拟染色的病理切片进行癌症分类,准确率可达到95.9%,在统计学上逼近真实染色的金标准,两小时可处理100张切片
人工智能·分类·数据挖掘·医学图像处理·医学人工智能