LeetCode算法动态规划—剑指 Offer 10- II. 青蛙跳台阶问题

目录

[剑指 Offer 10- II. 青蛙跳台阶问题](#剑指 Offer 10- II. 青蛙跳台阶问题)

题解:

代码:

运行结果:​编辑


一只青蛙一次可以跳上1级台阶,也可以跳上2级台阶。求该青蛙跳上一个 n 级的台阶总共有多少种跳法。

答案需要取模 1e9+7(1000000007),如计算初始结果为:1000000008,请返回 1。

示例 1:

复制代码
输入:n = 2
输出:2

示例 2:

复制代码
输入:n = 7
输出:21

示例 3:

复制代码
输入:n = 0
输出:1

提示:

  • 0 <= n <= 100

题解:

多少种可能性 的题目一般都有递推性,即 f(n) 和 f(n−1)...f(1)之间是有联系的。

首先,我们假设跳上 n 级台阶有 f(n) 种跳法。对于青蛙的最后一步,只有两种情况:跳上 1 级或 2 级台阶。

  • 如果最后一步跳上 1 级台阶,剩下 n-1 级台阶,共有 f(n-1) 种跳法。
  • 如果最后一步跳上 2 级台阶,剩下 n-2 级台阶,共有 f(n-2) 种跳法。

因此,f(n) = f(n-1) + f(n-2),即跳上 n 级台阶的跳法数等于跳上 n-1 级台阶的跳法数加上跳上 n-2 级台阶的跳法数,这正是斐波那契数列的递推性质

起始条件:

  • 青蛙跳台阶问题: f(0)=1, f(1)=1, f(2)=2;
  • 斐波那契数列问题: f(0)=0, f(1)=1, f(2)=1。

青蛙跳台阶问题中,f(0) = 1 表示当没有台阶时,青蛙已经在终点上,因此只有一种跳法。 而在斐波那契数列问题中,f(0) = 0 表示斐波那契数列的第一项为 0。

代码:

java 复制代码
class Solution {
    public int numWays(int n) {
        if(n<2) return 1;
        int p=0,q=1,r=1;
        for(int i=2;i<=n;i++){
            p=q;
            q=r;
            r=(p+q)%1000000007;
        }
        return r;
    }
}

运行结果:

相关推荐
aigcapi7 小时前
RAG 系统的黑盒测试:从算法对齐视角解析 GEO 优化的技术指标体系
大数据·人工智能·算法
柯慕灵8 小时前
7大推荐系统/算法框架对比
算法·推荐算法
adam-liu8 小时前
Fun Audio Chat 论文+项目调研
算法·语音端到端·fun-audio-chat
栀秋6669 小时前
你会先找行还是直接拍平?两种二分策略你Pick哪个?
前端·javascript·算法
.魚肉9 小时前
旅行商问题 (TSP)的蛮力算法与动态规划算法(Held-Karp)
动态规划·算法设计与分析·tsp·旅行商问题·蛮力法·held-karp算法·复杂度求解
如果你想拥有什么先让自己配得上拥有9 小时前
数学思想和数学思维分别都有什么?
线性代数·算法·机器学习
长安er9 小时前
LeetCode136/169/75/31/287 算法技巧题核心笔记
数据结构·算法·leetcode·链表·双指针
MarkHD9 小时前
智能体在车联网中的应用:第29天 多智能体完全合作场景的核心算法:从CTDE思想到VDN与MADDPG的深度解析
算法
wanzhong233310 小时前
CUDA学习5-矩阵乘法(共享内存版)
深度学习·学习·算法·cuda·高性能计算
fufu031110 小时前
Linux环境下的C语言编程(四十八)
数据结构·算法·排序算法