LeetCode算法动态规划—剑指 Offer 10- II. 青蛙跳台阶问题

目录

[剑指 Offer 10- II. 青蛙跳台阶问题](#剑指 Offer 10- II. 青蛙跳台阶问题)

题解:

代码:

运行结果:​编辑


一只青蛙一次可以跳上1级台阶,也可以跳上2级台阶。求该青蛙跳上一个 n 级的台阶总共有多少种跳法。

答案需要取模 1e9+7(1000000007),如计算初始结果为:1000000008,请返回 1。

示例 1:

复制代码
输入:n = 2
输出:2

示例 2:

复制代码
输入:n = 7
输出:21

示例 3:

复制代码
输入:n = 0
输出:1

提示:

  • 0 <= n <= 100

题解:

多少种可能性 的题目一般都有递推性,即 f(n) 和 f(n−1)...f(1)之间是有联系的。

首先,我们假设跳上 n 级台阶有 f(n) 种跳法。对于青蛙的最后一步,只有两种情况:跳上 1 级或 2 级台阶。

  • 如果最后一步跳上 1 级台阶,剩下 n-1 级台阶,共有 f(n-1) 种跳法。
  • 如果最后一步跳上 2 级台阶,剩下 n-2 级台阶,共有 f(n-2) 种跳法。

因此,f(n) = f(n-1) + f(n-2),即跳上 n 级台阶的跳法数等于跳上 n-1 级台阶的跳法数加上跳上 n-2 级台阶的跳法数,这正是斐波那契数列的递推性质

起始条件:

  • 青蛙跳台阶问题: f(0)=1, f(1)=1, f(2)=2;
  • 斐波那契数列问题: f(0)=0, f(1)=1, f(2)=1。

青蛙跳台阶问题中,f(0) = 1 表示当没有台阶时,青蛙已经在终点上,因此只有一种跳法。 而在斐波那契数列问题中,f(0) = 0 表示斐波那契数列的第一项为 0。

代码:

java 复制代码
class Solution {
    public int numWays(int n) {
        if(n<2) return 1;
        int p=0,q=1,r=1;
        for(int i=2;i<=n;i++){
            p=q;
            q=r;
            r=(p+q)%1000000007;
        }
        return r;
    }
}

运行结果:

相关推荐
你也向往长安城吗4 分钟前
推荐一个三维导航库:three-pathfinding-3d
javascript·算法
百度智能云19 分钟前
VectorDB+FastGPT一站式构建:智能知识库与企业级对话系统实战
算法
AI小白的Python之路1 小时前
数据结构与算法-排序
数据结构·算法·排序算法
DashVector1 小时前
如何通过Java SDK检索Doc
后端·算法·架构
zzz9331 小时前
transformer实战——mask
算法
一只鱼^_2 小时前
牛客周赛 Round 105
数据结构·c++·算法·均值算法·逻辑回归·动态规划·启发式算法
是阿建吖!2 小时前
【动态规划】斐波那契数列模型
算法·动态规划
啊阿狸不会拉杆2 小时前
《算法导论》第 27 章 - 多线程算法
java·jvm·c++·算法·图论
火车叨位去19493 小时前
力扣top100(day04-05)--堆
算法·leetcode·职场和发展
数据智能老司机3 小时前
面向企业的图学习扩展——面向图的传统机器学习
算法·机器学习