LeetCode算法动态规划—剑指 Offer 10- II. 青蛙跳台阶问题

目录

[剑指 Offer 10- II. 青蛙跳台阶问题](#剑指 Offer 10- II. 青蛙跳台阶问题)

题解:

代码:

运行结果:​编辑


一只青蛙一次可以跳上1级台阶,也可以跳上2级台阶。求该青蛙跳上一个 n 级的台阶总共有多少种跳法。

答案需要取模 1e9+7(1000000007),如计算初始结果为:1000000008,请返回 1。

示例 1:

复制代码
输入:n = 2
输出:2

示例 2:

复制代码
输入:n = 7
输出:21

示例 3:

复制代码
输入:n = 0
输出:1

提示:

  • 0 <= n <= 100

题解:

多少种可能性 的题目一般都有递推性,即 f(n) 和 f(n−1)...f(1)之间是有联系的。

首先,我们假设跳上 n 级台阶有 f(n) 种跳法。对于青蛙的最后一步,只有两种情况:跳上 1 级或 2 级台阶。

  • 如果最后一步跳上 1 级台阶,剩下 n-1 级台阶,共有 f(n-1) 种跳法。
  • 如果最后一步跳上 2 级台阶,剩下 n-2 级台阶,共有 f(n-2) 种跳法。

因此,f(n) = f(n-1) + f(n-2),即跳上 n 级台阶的跳法数等于跳上 n-1 级台阶的跳法数加上跳上 n-2 级台阶的跳法数,这正是斐波那契数列的递推性质

起始条件:

  • 青蛙跳台阶问题: f(0)=1, f(1)=1, f(2)=2;
  • 斐波那契数列问题: f(0)=0, f(1)=1, f(2)=1。

青蛙跳台阶问题中,f(0) = 1 表示当没有台阶时,青蛙已经在终点上,因此只有一种跳法。 而在斐波那契数列问题中,f(0) = 0 表示斐波那契数列的第一项为 0。

代码:

java 复制代码
class Solution {
    public int numWays(int n) {
        if(n<2) return 1;
        int p=0,q=1,r=1;
        for(int i=2;i<=n;i++){
            p=q;
            q=r;
            r=(p+q)%1000000007;
        }
        return r;
    }
}

运行结果:

相关推荐
用户992441031561 分钟前
TRAE SOLO 赋能大模型工程化实践:从模型选型到安全部署的一站式实战指南
算法
goyeer18 分钟前
05.[SAP ABAP] ABAP中的运算符
算法·sap·abap·运算符
NAGNIP1 小时前
面试官:BatchNorm、LayerNorm、GroupNorm、InstanceNorm 有什么本质区别?
算法·面试
Rock_yzh1 小时前
LeetCode算法刷题——560. 和为 K 的子数组
数据结构·c++·学习·算法·leetcode·职场和发展·哈希算法
水水不水啊1 小时前
通过一个域名,借助IPV6免费远程访问自己家里的设备
前端·python·算法
.格子衫.1 小时前
027动态规划之矩阵DP——算法备赛
算法·矩阵·动态规划
nju_spy1 小时前
力扣每日一题(11.10-11.29)0-1 和 k 整除系列
python·算法·leetcode·前缀和·单调栈·最大公约数·0-1背包
roman_日积跬步-终至千里1 小时前
【模式识别与机器学习(8)】主要算法与技术(下篇:高级模型与集成方法)之 元学习
学习·算法·机器学习
haing20191 小时前
Bezier曲线曲率极值的计算方法
人工智能·算法·机器学习·曲率极值
歌_顿1 小时前
深度学习算法以及优化器复习
人工智能·算法