LeetCode算法动态规划—剑指 Offer 10- II. 青蛙跳台阶问题

目录

[剑指 Offer 10- II. 青蛙跳台阶问题](#剑指 Offer 10- II. 青蛙跳台阶问题)

题解:

代码:

运行结果:​编辑


一只青蛙一次可以跳上1级台阶,也可以跳上2级台阶。求该青蛙跳上一个 n 级的台阶总共有多少种跳法。

答案需要取模 1e9+7(1000000007),如计算初始结果为:1000000008,请返回 1。

示例 1:

复制代码
输入:n = 2
输出:2

示例 2:

复制代码
输入:n = 7
输出:21

示例 3:

复制代码
输入:n = 0
输出:1

提示:

  • 0 <= n <= 100

题解:

多少种可能性 的题目一般都有递推性,即 f(n) 和 f(n−1)...f(1)之间是有联系的。

首先,我们假设跳上 n 级台阶有 f(n) 种跳法。对于青蛙的最后一步,只有两种情况:跳上 1 级或 2 级台阶。

  • 如果最后一步跳上 1 级台阶,剩下 n-1 级台阶,共有 f(n-1) 种跳法。
  • 如果最后一步跳上 2 级台阶,剩下 n-2 级台阶,共有 f(n-2) 种跳法。

因此,f(n) = f(n-1) + f(n-2),即跳上 n 级台阶的跳法数等于跳上 n-1 级台阶的跳法数加上跳上 n-2 级台阶的跳法数,这正是斐波那契数列的递推性质

起始条件:

  • 青蛙跳台阶问题: f(0)=1, f(1)=1, f(2)=2;
  • 斐波那契数列问题: f(0)=0, f(1)=1, f(2)=1。

青蛙跳台阶问题中,f(0) = 1 表示当没有台阶时,青蛙已经在终点上,因此只有一种跳法。 而在斐波那契数列问题中,f(0) = 0 表示斐波那契数列的第一项为 0。

代码:

java 复制代码
class Solution {
    public int numWays(int n) {
        if(n<2) return 1;
        int p=0,q=1,r=1;
        for(int i=2;i<=n;i++){
            p=q;
            q=r;
            r=(p+q)%1000000007;
        }
        return r;
    }
}

运行结果:

相关推荐
XFF不秃头2 小时前
力扣刷题笔记-旋转图像
c++·笔记·算法·leetcode
王老师青少年编程2 小时前
csp信奥赛C++标准模板库STL案例应用3
c++·算法·stl·csp·信奥赛·lower_bound·标准模版库
有为少年3 小时前
Welford 算法 | 优雅地计算海量数据的均值与方差
人工智能·深度学习·神经网络·学习·算法·机器学习·均值算法
Ven%3 小时前
从单轮问答到连贯对话:RAG多轮对话技术详解
人工智能·python·深度学习·神经网络·算法
山楂树の3 小时前
爬楼梯(动态规划)
算法·动态规划
谈笑也风生3 小时前
经典算法题型之复数乘法(二)
开发语言·python·算法
智算菩萨3 小时前
强化学习从单代理到多代理系统的理论与算法架构综述
人工智能·算法·强化学习
lhn3 小时前
大模型强化学习总结
算法
Gigavision3 小时前
MMPD数据集 最新Mamba算法 源码+数据集 下载方式
算法