LeetCode算法动态规划—剑指 Offer 10- II. 青蛙跳台阶问题

目录

[剑指 Offer 10- II. 青蛙跳台阶问题](#剑指 Offer 10- II. 青蛙跳台阶问题)

题解:

代码:

运行结果:​编辑


一只青蛙一次可以跳上1级台阶,也可以跳上2级台阶。求该青蛙跳上一个 n 级的台阶总共有多少种跳法。

答案需要取模 1e9+7(1000000007),如计算初始结果为:1000000008,请返回 1。

示例 1:

复制代码
输入:n = 2
输出:2

示例 2:

复制代码
输入:n = 7
输出:21

示例 3:

复制代码
输入:n = 0
输出:1

提示:

  • 0 <= n <= 100

题解:

多少种可能性 的题目一般都有递推性,即 f(n) 和 f(n−1)...f(1)之间是有联系的。

首先,我们假设跳上 n 级台阶有 f(n) 种跳法。对于青蛙的最后一步,只有两种情况:跳上 1 级或 2 级台阶。

  • 如果最后一步跳上 1 级台阶,剩下 n-1 级台阶,共有 f(n-1) 种跳法。
  • 如果最后一步跳上 2 级台阶,剩下 n-2 级台阶,共有 f(n-2) 种跳法。

因此,f(n) = f(n-1) + f(n-2),即跳上 n 级台阶的跳法数等于跳上 n-1 级台阶的跳法数加上跳上 n-2 级台阶的跳法数,这正是斐波那契数列的递推性质

起始条件:

  • 青蛙跳台阶问题: f(0)=1, f(1)=1, f(2)=2;
  • 斐波那契数列问题: f(0)=0, f(1)=1, f(2)=1。

青蛙跳台阶问题中,f(0) = 1 表示当没有台阶时,青蛙已经在终点上,因此只有一种跳法。 而在斐波那契数列问题中,f(0) = 0 表示斐波那契数列的第一项为 0。

代码:

java 复制代码
class Solution {
    public int numWays(int n) {
        if(n<2) return 1;
        int p=0,q=1,r=1;
        for(int i=2;i<=n;i++){
            p=q;
            q=r;
            r=(p+q)%1000000007;
        }
        return r;
    }
}

运行结果:

相关推荐
2501_9411113320 分钟前
C++代码重构实战
开发语言·c++·算法
一叶之秋141221 分钟前
从零开始:打造属于你的链式二叉树
数据结构·算法
CoovallyAIHub28 分钟前
CV研究告别数据荒?PAN世界模型实现「多步推理与规划」,可自造高质量训练数据
深度学习·算法·计算机视觉
Dream it possible!1 小时前
LeetCode 面试经典 150_二叉树_二叉树中的最大路径和(77_124_C++_困难)(DFS)
c++·leetcode·面试·二叉树
2501_941111681 小时前
模板编译期哈希计算
开发语言·c++·算法
CoovallyAIHub1 小时前
智能体与小模型:AI迈向平民化的新浪潮
深度学习·算法·计算机视觉
jllllyuz1 小时前
基于粒子群优化(PSO)的特征选择与支持向量机(SVM)分类
开发语言·算法·matlab
啊吧怪不啊吧2 小时前
贪心算法(局部最优实现全局最优)第一篇
算法·贪心算法
Yue丶越2 小时前
【C语言】深入理解指针(四)
java·c语言·算法