双系统ubuntu20.04(neotic版本)从0实现Gazebo仿真slam建图

双系统ubuntu20.04(neotic版本)从0实现Gazebo仿真slam建图

昨晚完成了ROS的多机通讯,还没来得及整理相关操作步骤,在进行实际小车的实验之前,还是先打算在仿真环境中进行测试,熟悉相关的操作步骤,计划通过虚拟机(笔记本)来操纵双系统(台式机)完成在仿真环境中的地图构建,导航等功能。

ps:别问为什么不直接通过向日葵远程操控,后面要进行实际环境中多机器人编队的测试,多机器人编队功能已经被写好了,但是需要安装在远程PC的工作空间中进行多机器人的控制

1、安装ROS(neotic)版本依赖

cpp 复制代码
  sudo apt-get install ros-noetic-joy ros-noetic-teleop-twist-joy \
  ros-noetic-teleop-twist-keyboard ros-noetic-laser-proc \
  ros-noetic-rgbd-launch ros-noetic-rosserial-arduino \
  ros-noetic-rosserial-python ros-noetic-rosserial-client \
  ros-noetic-rosserial-msgs ros-noetic-amcl ros-noetic-map-server \
  ros-noetic-move-base ros-noetic-urdf ros-noetic-xacro \
  ros-noetic-compressed-image-transport ros-noetic-rqt* ros-noetic-rviz \
  ros-noetic-gmapping ros-noetic-navigation ros-noetic-interactive-markers

ROS1和ROS2其他版本安装相关依赖参考网址(ROS1&ROS2依赖包)注意☝的是一行指令,分行输入会报错的。

2、安装turtlebot3软件包

Install TurtleBot3 via Debian Packages.

cpp 复制代码
 sudo apt install ros-noetic-dynamixel-sdk
 sudo apt install ros-noetic-turtlebot3-msgs
 sudo apt install ros-noetic-turtlebot3

3、设置环境变量

cpp 复制代码
 source ~/.bashrc

4、创建工作空间安装TB3功能包

cpp 复制代码
mkdir -p ~/catkin_ws/src
cd ~/catkin_ws/src/
git clone -b noetic-devel http://ghproxy.com/https://github.com/ROBOTIS-GIT/DynamixelSDK.git
git clone -b noetic-devel http://ghproxy.com/https://github.com/ROBOTIS-GIT/turtlebot3_msgs.git
git clone -b noetic-devel http://ghproxy.com/https://github.com/ROBOTIS-GIT/turtlebot3.git
git clone -b noetic-devel http://ghproxy.com/https://github.com/ROBOTIS-GIT/turtlebot3_simulations.git
cd ~/catkin_ws && catkin_make

ROS1其他版本的TB3功能包参考ROS1功能包

ROS2(foxy)版本功能包参考ROS2功能包

注意ROS1&ROS2的其他版本连接中改对应版本名称

编译成功
5、Gazebo仿真

(1)选择启动的机器人模型

cpp 复制代码
export TURTLEBOT3_MODEL=waffle_pi
cpp 复制代码
export TURTLEBOT3_MODEL=burger

(2)启动gazebo仿真环境

cpp 复制代码
roslaunch turtlebot3_gazebo turtlebot3_world.launch

可能会出现以下报错:

找到错误原因"环境变量设置有问题"

错误原因为环境变量设置有问题(后面进行优化)

运行下方代码后再执行roslaunch

cpp 复制代码
source ~/catkin_ws/devel/setup.bash
cpp 复制代码
 roslaunch turtlebot3_slam turtlebot3_slam.launch

turtlebot3_world.launch

(3)启动rviz进行建图

打开新的终端,还要在输入一边机器人选择模型的指令,在输入以下指令(后面进行优化)

cpp 复制代码
roslaunch turtlebot3_slam turtlebot3_slam.launch

(4)控制小车移动实现建图

打开新的终端,还要在输入一边机器人选择模型的指令

cpp 复制代码
roslaunch turtlebot3_teleop turtlebot3_teleop_key.launch

(5)保存地图:

cpp 复制代码
rosrun map_server map_saver -f ~/map_world

地图自动保存在~/home/map目录下,名为map_world.yaml和map_world.pgm

优化

目前在启动机器人小车在仿真环境中的建图非常麻烦,每次启动新的节点都要输入指令选择一遍机器人的模型,且在启动turtlebot3_world.launch文件前还要进行以便环境的配置,总之是非常麻烦的!

下面把这些指令提前配置到source ~/.bashrc文件中

(1)手动配置

输入:

cpp 复制代码
sudo gedit ~/.bashrc 

在文本的最后加入以下这些指令:

cpp 复制代码
source ~/catkin_ws/devel/setup.bash
export TURTLEBOT3_MODEL=waffle_pi//如果你要选择burger型机器人输入export TURTLEBOT3_MODEL=burger
export ROS_DOMAIN_ID=30 #TURTLEBOT3
export GAZEBO_MODEL_PATH=$GAZEBO_MODEL_PATH:~/catkin_ws/src/turtlebot3/turtlebot3_simulations/turtlebot3_gazebo/models

然后保存后关闭文件,打开终端输入source ~/.bashrc更新环境即可完成。

(2)输入指令配置

我参考其他配置环境指令,输入后可达到相同效果。

cpp 复制代码
echo 'source ~/catkin_ws/devel/setup.bash' >> ~/.bashrc
echo 'export TURTLEBOT3_MODEL=waffle_pi' >> ~/.bashrc
echo 'export ROS_DOMAIN_ID=30 #TURTLEBOT3' >> ~/.bashrc
echo 'export GAZEBO_MODEL_PATH=$GAZEBO_MODEL_PATH:~/catkin_ws/src/turtlebot3/turtlebot3_simulations/turtlebot3_gazebo/models' >> ~/.bashrc

输入完成后打开新终端输入:

cpp 复制代码
source ~/.bashrc

设置完成后,现在启动建图,仅需要输入:

(1)启动gazebo仿真环境

cpp 复制代码
roslaunch turtlebot3_gazebo turtlebot3_world.launch

(2)启动RVIZ

cpp 复制代码
roslaunch turtlebot3_slam turtlebot3_slam.launch

(3)启动键盘控制节点即可

cpp 复制代码
roslaunch turtlebot3_teleop turtlebot3_teleop_key.launch
相关推荐
代码AI弗森1 小时前
从 IDE 到 CLI:AI 编程代理工具全景与落地指南(附对比矩阵与脚本化示例)
ide·人工智能·矩阵
007tg4 小时前
从ChatGPT家长控制功能看AI合规与技术应对策略
人工智能·chatgpt·企业数据安全
Memene摸鱼日报4 小时前
「Memene 摸鱼日报 2025.9.11」腾讯推出命令行编程工具 CodeBuddy Code, ChatGPT 开发者模式迎来 MCP 全面支持
人工智能·chatgpt·agi
linjoe994 小时前
【Deep Learning】Ubuntu配置深度学习环境
人工智能·深度学习·ubuntu
先做个垃圾出来………5 小时前
残差连接的概念与作用
人工智能·算法·机器学习·语言模型·自然语言处理
AI小书房6 小时前
【人工智能通识专栏】第十三讲:图像处理
人工智能
fanstuck6 小时前
基于大模型的个性化推荐系统实现探索与应用
大数据·人工智能·语言模型·数据挖掘
多看书少吃饭7 小时前
基于 OpenCV 的眼球识别算法以及青光眼算法识别
人工智能·opencv·计算机视觉
一条数据库7 小时前
南京方言数据集|300小时高质量自然对话音频|专业录音棚采集|方言语音识别模型训练|情感计算研究|方言保护文化遗产数字化|语音情感识别|方言对话系统开发
人工智能·音视频·语音识别