【深度学习实验】线性模型(五):使用Pytorch实现线性模型:基于鸢尾花数据集,对模型进行评估(使用随机梯度下降优化器)

目录

一、实验介绍

二、实验环境

[1. 配置虚拟环境](#1. 配置虚拟环境)

[2. 库版本介绍](#2. 库版本介绍)

三、实验内容

[0. 导入库](#0. 导入库)

[1. 线性模型linear_model](#1. 线性模型linear_model)

[2. 损失函数loss_function](#2. 损失函数loss_function)

[3. 鸢尾花数据预处理](#3. 鸢尾花数据预处理)

[4. 初始化权重和偏置](#4. 初始化权重和偏置)

[5. 优化器](#5. 优化器)

[6. 迭代](#6. 迭代)

[7. 测试集预测](#7. 测试集预测)

[8. 实验结果评估](#8. 实验结果评估)

[9. 完整代码](#9. 完整代码)


一、实验介绍

线性模型是机器学习中最基本的模型之一,通过对输入特征进行线性组合来预测输出。本实验旨在展示使用随机梯度下降优化器训练线性模型的过程,并评估模型在鸢尾花数据集上的性能。

二、实验环境

本系列实验使用了PyTorch深度学习框架,相关操作如下:

1. 配置虚拟环境

bash 复制代码
conda create -n DL python=3.7 
bash 复制代码
conda activate DL
bash 复制代码
pip install torch==1.8.1+cu102 torchvision==0.9.1+cu102 torchaudio==0.8.1 -f https://download.pytorch.org/whl/torch_stable.html
bash 复制代码
conda install matplotlib
bash 复制代码
 conda install scikit-learn

2. 库版本介绍

|--------------|-------------|--------|
| 软件包 | 本实验版本 | 目前最新版 |
| matplotlib | 3.5.3 | 3.8.0 |
| numpy | 1.21.6 | 1.26.0 |
| python | 3.7.16 | |
| scikit-learn | 0.22.1 | 1.3.0 |
| torch | 1.8.1+cu102 | 2.0.1 |
| torchaudio | 0.8.1 | 2.0.2 |
| torchvision | 0.9.1+cu102 | 0.15.2 |

三、实验内容

0. 导入库

python 复制代码
import torch
import torch.optim as optim
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn import metrics
  • PyTorch
    • 优化器模块(optim
  • scikit-learn
    • 数据模块(load_iris)
    • 数据划分(train_test_split)
    • 评估指标模块(metrics

1. 线性模型linear_model

该函数接受输入数据x,使用随机生成的权重w和偏置b,计算输出值output。这里的线性模型的形式为 output = x * w + b

python 复制代码
def linear_model(x):
    return torch.matmul(x, w) + b

2. 损失函数loss_function

这里使用的是均方误差(MSE)作为损失函数,计算预测值与真实值之间的差的平方。

python 复制代码
def loss_function(y_true, y_pred):
    loss = (y_pred - y_true) ** 2
    return loss

3. 鸢尾花数据预处理

  • 加载鸢尾花数据集并进行预处理

    • 将数据集分为训练集和测试集

    • 将数据转换为PyTorch张量

python 复制代码
iris = load_iris()
x_train, x_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.2, random_state=42)
x_train = torch.tensor(x_train, dtype=torch.float32)
y_train = torch.tensor(y_train, dtype=torch.float32).view(-1, 1)
x_test = torch.tensor(x_test, dtype=torch.float32)
y_test = torch.tensor(y_test, dtype=torch.float32).view(-1, 1)

4. 初始化权重和偏置

python 复制代码
w = torch.rand(1, 1, requires_grad=True)
b = torch.randn(1, requires_grad=True)

5. 优化器

使用随机梯度下降(SGD)优化器进行模型训练,指定学习率和待优化的参数w, b。

python 复制代码
optimizer = optim.SGD([w, b], lr=0.01) # 使用SGD优化器

6. 迭代

python 复制代码
num_epochs = 100
for epoch in range(num_epochs):
    optimizer.zero_grad()       # 梯度清零
    prediction = linear_model(x_train, w, b)
    loss = loss_function(y_train, prediction)
    loss.mean().backward()      # 计算梯度
    optimizer.step()            # 更新参数

    if (epoch + 1) % 10 == 0:
        print(f"Epoch {epoch+1}/{num_epochs}, Loss: {loss.mean().item()}")
  • 在每个迭代中:

    • 将优化器的梯度缓存清零,然后使用当前的权重和偏置对输入 x 进行预测,得到预测结果 prediction

    • 使用 loss_function 计算预测结果与真实标签之间的损失,得到损失张量 loss

    • 调用 loss.mean().backward() 计算损失的平均值,并根据计算得到的梯度进行反向传播。

    • 调用 optimizer.step() 更新权重和偏置,使用优化器进行梯度下降更新。

    • 每隔 10 个迭代输出当前迭代的序号、总迭代次数和损失的平均值。

7. 测试集预测

在测试集上进行预测,使用训练好的模型对测试集进行预测

python 复制代码
with torch.no_grad():
    test_prediction = linear_model(x_test, w, b)
    test_prediction = torch.round(test_prediction) # 四舍五入为整数
    test_prediction = test_prediction.detach().numpy()

8. 实验结果评估

  • 使用 metrics 模块计算分类准确度(accuracy)、精确度(precision)、召回率(recall)和F1得分(F1 score)。
  • 输出经过优化后的参数 wb,以及在测试集上的评估指标。
python 复制代码
accuracy = metrics.accuracy_score(y_test, test_prediction)
precision = metrics.precision_score(y_test, test_prediction, average='macro')
recall = metrics.recall_score(y_test, test_prediction, average='macro')
f1 = metrics.f1_score(y_test, test_prediction, average='macro')
print("The optimized parameters are:")
print("w:", w.flatten().tolist())
print("b:", b.item())

print("Accuracy:", accuracy)
print("Precision:", precision)
print("Recall:", recall)
print("F1 Score:", f1)

本实验使用随机梯度下降优化器训练线性模型,并在鸢尾花数据集上取得了较好的分类性能。实验结果表明,经过优化后的模型能够对鸢尾花进行准确的分类,并具有较高的精确度、召回率和F1得分。

9. 完整代码

python 复制代码
import torch
import torch.optim as optim
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn import metrics

def linear_model(x, w, b):
    return torch.matmul(x, w) + b

def loss_function(y_true, y_pred):
    loss = (y_pred - y_true) ** 2
    return loss

# 加载鸢尾花数据集并进行预处理
iris = load_iris()
x_train, x_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.2, random_state=42)
x_train = torch.tensor(x_train, dtype=torch.float32)
y_train = torch.tensor(y_train, dtype=torch.float32).view(-1, 1)
x_test = torch.tensor(x_test, dtype=torch.float32)
y_test = torch.tensor(y_test, dtype=torch.float32).view(-1, 1)

w = torch.rand(x_train.shape[1], 1, requires_grad=True)
b = torch.randn(1, requires_grad=True)
optimizer = optim.SGD([w, b], lr=0.01) # 使用SGD优化器

num_epochs = 100
for epoch in range(num_epochs):
    optimizer.zero_grad()       # 梯度清零
    prediction = linear_model(x_train, w, b)
    loss = loss_function(y_train, prediction)
    loss.mean().backward()      # 计算梯度
    optimizer.step()            # 更新参数

    if (epoch + 1) % 10 == 0:
        print(f"Epoch {epoch+1}/{num_epochs}, Loss: {loss.mean().item()}")

# 在测试集上进行预测
with torch.no_grad():
    test_prediction = linear_model(x_test, w, b)
    test_prediction = torch.round(test_prediction) # 四舍五入为整数
    test_prediction = test_prediction.detach().numpy()

accuracy = metrics.accuracy_score(y_test, test_prediction)
precision = metrics.precision_score(y_test, test_prediction, average='macro')
recall = metrics.recall_score(y_test, test_prediction, average='macro')
f1 = metrics.f1_score(y_test, test_prediction, average='macro')
print("The optimized parameters are:")
print("w:", w.flatten().tolist())
print("b:", b.item())

print("Accuracy:", accuracy)
print("Precision:", precision)
print("Recall:", recall)
print("F1 Score:", f1)
相关推荐
武子康1 分钟前
大数据-212 数据挖掘 机器学习理论 - 无监督学习算法 KMeans 基本原理 簇内误差平方和
大数据·人工智能·学习·算法·机器学习·数据挖掘
deephub2 分钟前
Tokenformer:基于参数标记化的高效可扩展Transformer架构
人工智能·python·深度学习·架构·transformer
Q8137574608 分钟前
数据挖掘在金融交易中的应用:民锋科技的智能化布局
人工智能·科技·数据挖掘
qzhqbb11 分钟前
语言模型的采样方法
人工智能·语言模型·自然语言处理
qzhqbb14 分钟前
基于 Transformer 的语言模型
人工智能·语言模型·自然语言处理·transformer
___Dream15 分钟前
【CTFN】基于耦合翻译融合网络的多模态情感分析的层次学习
人工智能·深度学习·机器学习·transformer·人机交互
极客代码22 分钟前
【Python TensorFlow】入门到精通
开发语言·人工智能·python·深度学习·tensorflow
义小深25 分钟前
TensorFlow|咖啡豆识别
人工智能·python·tensorflow
Tianyanxiao1 小时前
如何利用探商宝精准营销,抓住行业机遇——以AI技术与大数据推动企业信息精准筛选
大数据·人工智能·科技·数据分析·深度优先·零售
撞南墙者1 小时前
OpenCV自学系列(1)——简介和GUI特征操作
人工智能·opencv·计算机视觉