OpenCV(四十一):图像分割-分水岭法

1.分水岭方法介绍

OpenCV 提供了分水岭算法(Watershed Algorithm)的实现, 使用分水岭算法对图像进行分割,将图像的不同区域分割成互不干扰的区域。分水岭算法模拟了水在图像中的扩散和聚集过程,将标记的边界被看作是阻挡水扩散的高山,通过模拟水的扩散和聚集,最终确定图像的分割边界。

如图所示:水从山低蔓延,而高山阻止水扩散。

2.分水岭法分割图像函数watershed()

void cv::watershed ( InputArray image,

InputOutputArray markers

  • image:输入图像,数据类型为CV_8U的三通道图像
  • markers:输入/输出CV_32S的单通道图像的标记结果,与原图像具有相同的尺寸

示例代码:

基于标记图像中画的线来对原图像进行分割。

复制代码
void  watershed_f(Mat mat,Mat mat2){//mat原图像  mat2含有标记的图像
    // 把四通道原图像转换成三通道
    Mat image;
    cv::cvtColor(mat, image, cv::COLOR_BGRA2BGR);

    Mat imgGray,imgMask,img_;
    Mat maskWaterShed;//watershed()函数的参数
    //对标记的图像进行灰度化
    Mat image2;
    cvtColor(mat2,imgGray,COLOR_BGR2GRAY);
    //对标记的图像二值化并开运算,可得到标记画的线
    threshold(imgGray,imgMask,250,255,THRESH_BINARY);
    Mat k= getStructuringElement(0,Size(3,3));
    morphologyEx(imgMask,imgMask,MORPH_OPEN,k);
    //显示二值化并开运算的结果
    imwrite("/sdcard/DCIM/imgMask2.png",imgMask);
    //对二值化后的标记图像进行轮廓检测,可得到画的线的轮廓
    vector<vector<Point>> contours;
    vector<Vec4i> hierarchy;
    findContours(imgMask,contours,hierarchy,RETR_TREE,CHAIN_APPROX_SIMPLE,Point());
    //在maskWaterShed上绘制出上面得到的轮廓
    maskWaterShed=Mat::zeros(imgMask.size(),CV_32S);
    for(int index=0;index<contours.size();index++){
        drawContours(maskWaterShed,contours,index,Scalar::all(index+1),2,8);
    }
    //分水岭算法 需要对原图像进行处理
    watershed(image,maskWaterShed);
    //显示分水岭算法分割的每个区域
    imwrite("/sdcard/DCIM/maskWaterShed2.png",maskWaterShed);
  
    //随机生成几种颜色
    vector<Vec3b> colors;
    for(int i=0;i<contours.size();i++){
        int b=theRNG().uniform(0,255);
        int g=theRNG().uniform(0,255);
        int r=theRNG().uniform(0,255);
        colors.push_back(Vec3b((uchar)b,(uchar)g,(uchar)r));
    }
    //给分水岭算法分割的每个区域添加颜色
    Mat resultImg=Mat(image2.size(),CV_8UC3);
    for(int i=0;i<imgMask.rows;i++){
        for(int j=0;j<imgMask.cols;j++){
            //绘制每个区域的颜色
            int index=maskWaterShed.at<int>(i,j);
            if(index==-1)//区域间的值被置为-1(边界)
            {
                resultImg.at<Vec3b>(i,j)=Vec3b(255,255,255);
            }
            else if(index<=0||index>contours.size())//没有标记清楚的区域被置为0
            {
                resultImg.at<Vec3b>(i,j)=Vec3b(0,0,0);
            }else{
                resultImg.at<Vec3b>(i,j)=colors[index-1];
            }
        }
    }
    //显示给分水岭算法分割的每个区域添加颜色的结果
    imwrite("/sdcard/DCIM/resultImg2.png",resultImg);
    //分割的区域与原图像结合
    resultImg=resultImg*0.8+image*0.2;
    imwrite("/sdcard/DCIM/resultImg3.png",resultImg);

}
相关推荐
liulilittle11 分钟前
深度剖析:OPENPPP2 libtcpip 实现原理与架构设计
开发语言·网络·c++·tcp/ip·智能路由器·tcp·通信
ai_xiaogui12 分钟前
一键部署AI工具!用AIStarter快速安装ComfyUI与Stable Diffusion
人工智能·stable diffusion·部署ai工具·ai应用市场教程·sd快速部署·comfyui一键安装
十年编程老舅1 小时前
跨越十年的C++演进:C++20新特性全解析
c++·c++11·c++20·c++14·c++23·c++17·c++新特性
聚客AI1 小时前
Embedding进化论:从Word2Vec到OpenAI三代模型技术跃迁
人工智能·llm·掘金·日新计划
weixin_387545641 小时前
深入解析 AI Gateway:新一代智能流量控制中枢
人工智能·gateway
聽雨2372 小时前
03每日简报20250705
人工智能·社交电子·娱乐·传媒·媒体
二川bro2 小时前
飞算智造JavaAI:智能编程革命——AI重构Java开发新范式
java·人工智能·重构
acstdm2 小时前
DAY 48 CBAM注意力
人工智能·深度学习·机器学习
澪-sl2 小时前
基于CNN的人脸关键点检测
人工智能·深度学习·神经网络·计算机视觉·cnn·视觉检测·卷积神经网络