循环神经网络-简洁实现

参考:
https://zh-v2.d2l.ai/chapter_recurrent-neural-networks/rnn-concise.html
https://pytorch.org/docs/stable/generated/torch.nn.RNN.html?highlight=rnn#torch.nn.RNN

RNN



python 复制代码
import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l

batch_size, num_steps = 32, 35  # num_steps: sequence length
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps) #  vocab:Vocab 26

# 1 定义模型
# 构造一个具有256个隐藏层的循环神经网络 rnn_layer
# 此处先仅设计一层循环神经网络,以后讨论多层神经网络
num_hiddens = 256
rnn_layer = nn.RNN(len(vocab),num_hiddens) # RNN(28,256)
"""input_size -- The number of expected features in the input x
hidden_size -- The number of features in the hidden state h
num_layers -- Number of recurrent layers. E.g., setting num_layers=2 would mean stacking two RNNs together to form a stacked RNN, with the second RNN taking in outputs of the first RNN and computing the final results. Default: 1
nonlinearity -- The non-linearity to use. Can be either 'tanh' or 'relu'. Default: 'tanh'
bias -- If False, then the layer does not use bias weights b_ih and b_hh. Default: True
batch_first -- If True, then the input and output tensors are provided as (batch, seq, feature) instead of (seq, batch, feature). Note that this does not apply to hidden or cell states. See the Inputs/Outputs sections below for details. Default: False
dropout -- If non-zero, introduces a Dropout layer on the outputs of each RNN layer except the last layer, with dropout probability equal to dropout. Default: 0
bidirectional -- If True, becomes a bidirectional RNN. Default: False
"""
# 2.我们使用张量来初始化隐状态,它的形状是(隐藏层数,批量大小,隐藏单元数)
state = torch.zeros((1,batch_size,num_hiddens))
print(state.shape)  #(torch.size([1,32,256]))

#3. 通过一个隐状态和一个输入,我们就可以用更新后的隐状态计算输出。
# 需要强调的是,rnn_layer的"输出"(Y)不涉及输出层的计算: 它是指每个时间步的隐状态,这些隐状态可以用作后续输出层的输入。
X=torch.rand(size=(num_steps,batch_size,len(vocab)))  #torch.Size([35, 32, 28])   # (L,N,H(in)) L:sequence length  N batch size Hin: input_size
Y,state_new = rnn_layer(X,state)
print(Y.shape,state_new.shape) #torch.Size([35, 32, 256]) torch.Size([1, 32, 256])

class RNNModel(nn.Module):
    """循环神经网络"""
    def __init__(self,rnn_layer,vocab_size,**kwargs):
        super(RNNModel,self).__init__(**kwargs)
        self.rnn = rnn_layer
        self.vocab_size = vocab_size
        self.num_hiddens = self.rnn.hidden_size
        # 如果RNN是双向的,num_directions 应该是2,否则应该是1
        if not self.rnn.bidirectional:
            self.num_directions = 1
            self.linear = nn.Linear(self.num_hiddens,self.vocab_size)
        else:
            self.num_directions = 2
            self.linear = nn.Linear(self.num_hiddens*2,self.vocab_size)

    def forward(self,inputs,state):
        X = F.one_hot(inputs.T.long(),self.vocab_size)
        X = X.to(torch.float32)
        Y,state = self.rnn(X,state)

        # 全连接首层将Y的形状改为(时间步数*批量大小,隐藏单元数)
        output = self.linear(Y.reshape((-1,Y.shape[-1])))
        return output,state

    def begin_state(self, device, batch_size=1):
        if not isinstance(self.rnn, nn.LSTM):
            # nn.GRU以张量作为隐状态
            return  torch.zeros((self.num_directions * self.rnn.num_layers,
                                 batch_size, self.num_hiddens),
                                device=device)
        else:
            # nn.LSTM以元组作为隐状态
            return (torch.zeros((
                self.num_directions * self.rnn.num_layers,
                batch_size, self.num_hiddens), device=device),
                    torch.zeros((
                        self.num_directions * self.rnn.num_layers,
                        batch_size, self.num_hiddens), device=device))

# 训练
device = d2l.try_gpu()
net = RNNModel(rnn_layer,vocab_size=len(vocab))
net = net.to(device)
num_epochs ,lr = 500,1
d2l.train_ch8(net,train_iter,vocab,lr,num_epochs,device)
相关推荐
m0_650108242 小时前
【论文精读】CMD:迈向高效视频生成的新范式
人工智能·论文精读·视频扩散模型·高效生成·内容 - 运动分解·latent 空间
电鱼智能的电小鱼3 小时前
基于电鱼 AI 工控机的智慧工地视频智能分析方案——边缘端AI检测,实现无人值守下的实时安全预警
网络·人工智能·嵌入式硬件·算法·安全·音视频
年年测试3 小时前
AI驱动的测试:用Dify工作流实现智能缺陷分析与分类
人工智能·分类·数据挖掘
唐兴通个人4 小时前
人工智能Deepseek医药AI培训师培训讲师唐兴通讲课课程纲要
大数据·人工智能
WGS.4 小时前
llama factory 扩充词表训练
深度学习
共绩算力4 小时前
Llama 4 Maverick Scout 多模态MoE新里程碑
人工智能·llama·共绩算力
DashVector5 小时前
向量检索服务 DashVector产品计费
数据库·数据仓库·人工智能·算法·向量检索
AI纪元故事会5 小时前
【计算机视觉目标检测算法对比:R-CNN、YOLO与SSD全面解析】
人工智能·算法·目标检测·计算机视觉
音视频牛哥5 小时前
从协议规范和使用场景探讨为什么SmartMediaKit没有支持DASH
人工智能·音视频·大牛直播sdk·dash·dash还是rtmp·dash还是rtsp·dash还是hls
赞奇科技Xsuperzone6 小时前
DGX Spark 实战解析:模型选择与效率优化全指南
大数据·人工智能·gpt·spark·nvidia