循环神经网络-简洁实现

参考:
https://zh-v2.d2l.ai/chapter_recurrent-neural-networks/rnn-concise.html
https://pytorch.org/docs/stable/generated/torch.nn.RNN.html?highlight=rnn#torch.nn.RNN

RNN



python 复制代码
import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l

batch_size, num_steps = 32, 35  # num_steps: sequence length
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps) #  vocab:Vocab 26

# 1 定义模型
# 构造一个具有256个隐藏层的循环神经网络 rnn_layer
# 此处先仅设计一层循环神经网络,以后讨论多层神经网络
num_hiddens = 256
rnn_layer = nn.RNN(len(vocab),num_hiddens) # RNN(28,256)
"""input_size -- The number of expected features in the input x
hidden_size -- The number of features in the hidden state h
num_layers -- Number of recurrent layers. E.g., setting num_layers=2 would mean stacking two RNNs together to form a stacked RNN, with the second RNN taking in outputs of the first RNN and computing the final results. Default: 1
nonlinearity -- The non-linearity to use. Can be either 'tanh' or 'relu'. Default: 'tanh'
bias -- If False, then the layer does not use bias weights b_ih and b_hh. Default: True
batch_first -- If True, then the input and output tensors are provided as (batch, seq, feature) instead of (seq, batch, feature). Note that this does not apply to hidden or cell states. See the Inputs/Outputs sections below for details. Default: False
dropout -- If non-zero, introduces a Dropout layer on the outputs of each RNN layer except the last layer, with dropout probability equal to dropout. Default: 0
bidirectional -- If True, becomes a bidirectional RNN. Default: False
"""
# 2.我们使用张量来初始化隐状态,它的形状是(隐藏层数,批量大小,隐藏单元数)
state = torch.zeros((1,batch_size,num_hiddens))
print(state.shape)  #(torch.size([1,32,256]))

#3. 通过一个隐状态和一个输入,我们就可以用更新后的隐状态计算输出。
# 需要强调的是,rnn_layer的"输出"(Y)不涉及输出层的计算: 它是指每个时间步的隐状态,这些隐状态可以用作后续输出层的输入。
X=torch.rand(size=(num_steps,batch_size,len(vocab)))  #torch.Size([35, 32, 28])   # (L,N,H(in)) L:sequence length  N batch size Hin: input_size
Y,state_new = rnn_layer(X,state)
print(Y.shape,state_new.shape) #torch.Size([35, 32, 256]) torch.Size([1, 32, 256])

class RNNModel(nn.Module):
    """循环神经网络"""
    def __init__(self,rnn_layer,vocab_size,**kwargs):
        super(RNNModel,self).__init__(**kwargs)
        self.rnn = rnn_layer
        self.vocab_size = vocab_size
        self.num_hiddens = self.rnn.hidden_size
        # 如果RNN是双向的,num_directions 应该是2,否则应该是1
        if not self.rnn.bidirectional:
            self.num_directions = 1
            self.linear = nn.Linear(self.num_hiddens,self.vocab_size)
        else:
            self.num_directions = 2
            self.linear = nn.Linear(self.num_hiddens*2,self.vocab_size)

    def forward(self,inputs,state):
        X = F.one_hot(inputs.T.long(),self.vocab_size)
        X = X.to(torch.float32)
        Y,state = self.rnn(X,state)

        # 全连接首层将Y的形状改为(时间步数*批量大小,隐藏单元数)
        output = self.linear(Y.reshape((-1,Y.shape[-1])))
        return output,state

    def begin_state(self, device, batch_size=1):
        if not isinstance(self.rnn, nn.LSTM):
            # nn.GRU以张量作为隐状态
            return  torch.zeros((self.num_directions * self.rnn.num_layers,
                                 batch_size, self.num_hiddens),
                                device=device)
        else:
            # nn.LSTM以元组作为隐状态
            return (torch.zeros((
                self.num_directions * self.rnn.num_layers,
                batch_size, self.num_hiddens), device=device),
                    torch.zeros((
                        self.num_directions * self.rnn.num_layers,
                        batch_size, self.num_hiddens), device=device))

# 训练
device = d2l.try_gpu()
net = RNNModel(rnn_layer,vocab_size=len(vocab))
net = net.to(device)
num_epochs ,lr = 500,1
d2l.train_ch8(net,train_iter,vocab,lr,num_epochs,device)
相关推荐
T062051416 分钟前
【实证分析】上市公司企业风险承担水平数据集(2000-2022年)
大数据·人工智能
电报号dapp11916 分钟前
全链游戏模式:自治世界与AI增强型交互
人工智能·游戏·web3·去中心化·区块链·智能合约
不爱学英文的码字机器18 分钟前
持续交付的进化:从DevOps到AI驱动的IT新动能
运维·人工智能·devops
Vertira20 分钟前
如何在 PyTorch 中自定义卷积核参数(亲测,已解决)
人工智能·pytorch·python
henyaoyuancc39 分钟前
vla学习 富
人工智能·算法
atbigapp.com40 分钟前
9个数据分析指令为工作赋能
人工智能·数据分析·aigc
云卓SKYDROID1 小时前
无人机视觉跟踪模块技术解析!
人工智能·无人机·科普·高科技·云卓科技
OpenVINO生态社区1 小时前
人工智能与无人机的组合如何撕开俄空天军的 “核心“
人工智能·无人机
强盛小灵通专卖员1 小时前
DL00871-基于深度学习YOLOv11的盲人障碍物目标检测含完整数据集
人工智能·深度学习·yolo·目标检测·计算机视觉·无人机·核心期刊
pen-ai1 小时前
【NLP】 38. Agent
人工智能·自然语言处理