循环神经网络-简洁实现

参考:
https://zh-v2.d2l.ai/chapter_recurrent-neural-networks/rnn-concise.html
https://pytorch.org/docs/stable/generated/torch.nn.RNN.html?highlight=rnn#torch.nn.RNN

RNN



python 复制代码
import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l

batch_size, num_steps = 32, 35  # num_steps: sequence length
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps) #  vocab:Vocab 26

# 1 定义模型
# 构造一个具有256个隐藏层的循环神经网络 rnn_layer
# 此处先仅设计一层循环神经网络,以后讨论多层神经网络
num_hiddens = 256
rnn_layer = nn.RNN(len(vocab),num_hiddens) # RNN(28,256)
"""input_size -- The number of expected features in the input x
hidden_size -- The number of features in the hidden state h
num_layers -- Number of recurrent layers. E.g., setting num_layers=2 would mean stacking two RNNs together to form a stacked RNN, with the second RNN taking in outputs of the first RNN and computing the final results. Default: 1
nonlinearity -- The non-linearity to use. Can be either 'tanh' or 'relu'. Default: 'tanh'
bias -- If False, then the layer does not use bias weights b_ih and b_hh. Default: True
batch_first -- If True, then the input and output tensors are provided as (batch, seq, feature) instead of (seq, batch, feature). Note that this does not apply to hidden or cell states. See the Inputs/Outputs sections below for details. Default: False
dropout -- If non-zero, introduces a Dropout layer on the outputs of each RNN layer except the last layer, with dropout probability equal to dropout. Default: 0
bidirectional -- If True, becomes a bidirectional RNN. Default: False
"""
# 2.我们使用张量来初始化隐状态,它的形状是(隐藏层数,批量大小,隐藏单元数)
state = torch.zeros((1,batch_size,num_hiddens))
print(state.shape)  #(torch.size([1,32,256]))

#3. 通过一个隐状态和一个输入,我们就可以用更新后的隐状态计算输出。
# 需要强调的是,rnn_layer的"输出"(Y)不涉及输出层的计算: 它是指每个时间步的隐状态,这些隐状态可以用作后续输出层的输入。
X=torch.rand(size=(num_steps,batch_size,len(vocab)))  #torch.Size([35, 32, 28])   # (L,N,H(in)) L:sequence length  N batch size Hin: input_size
Y,state_new = rnn_layer(X,state)
print(Y.shape,state_new.shape) #torch.Size([35, 32, 256]) torch.Size([1, 32, 256])

class RNNModel(nn.Module):
    """循环神经网络"""
    def __init__(self,rnn_layer,vocab_size,**kwargs):
        super(RNNModel,self).__init__(**kwargs)
        self.rnn = rnn_layer
        self.vocab_size = vocab_size
        self.num_hiddens = self.rnn.hidden_size
        # 如果RNN是双向的,num_directions 应该是2,否则应该是1
        if not self.rnn.bidirectional:
            self.num_directions = 1
            self.linear = nn.Linear(self.num_hiddens,self.vocab_size)
        else:
            self.num_directions = 2
            self.linear = nn.Linear(self.num_hiddens*2,self.vocab_size)

    def forward(self,inputs,state):
        X = F.one_hot(inputs.T.long(),self.vocab_size)
        X = X.to(torch.float32)
        Y,state = self.rnn(X,state)

        # 全连接首层将Y的形状改为(时间步数*批量大小,隐藏单元数)
        output = self.linear(Y.reshape((-1,Y.shape[-1])))
        return output,state

    def begin_state(self, device, batch_size=1):
        if not isinstance(self.rnn, nn.LSTM):
            # nn.GRU以张量作为隐状态
            return  torch.zeros((self.num_directions * self.rnn.num_layers,
                                 batch_size, self.num_hiddens),
                                device=device)
        else:
            # nn.LSTM以元组作为隐状态
            return (torch.zeros((
                self.num_directions * self.rnn.num_layers,
                batch_size, self.num_hiddens), device=device),
                    torch.zeros((
                        self.num_directions * self.rnn.num_layers,
                        batch_size, self.num_hiddens), device=device))

# 训练
device = d2l.try_gpu()
net = RNNModel(rnn_layer,vocab_size=len(vocab))
net = net.to(device)
num_epochs ,lr = 500,1
d2l.train_ch8(net,train_iter,vocab,lr,num_epochs,device)
相关推荐
禁默几秒前
【硬核入门】无需板卡也能造 AI 算子?深度玩转 CANN ops-math 通用数学库
人工智能·aigc·cann
敏叔V5875 分钟前
AI智能体的工具学习进阶:零样本API理解与调用
人工智能·学习
徐小夕@趣谈前端14 分钟前
拒绝重复造轮子?我们偏偏花365天,用Vue3写了款AI协同的Word编辑器
人工智能·编辑器·word
阿里云大数据AI技术15 分钟前
全模态、多引擎、一体化,阿里云DLF3.0构建Data+AI驱动的智能湖仓平台
人工智能·阿里云·云计算
陈天伟教授15 分钟前
人工智能应用- 语言理解:05.大语言模型
人工智能·语言模型·自然语言处理
池央17 分钟前
CANN GE 深度解析:图编译器的核心优化策略、执行流调度与模型下沉技术原理
人工智能·ci/cd·自动化
七月稻草人19 分钟前
CANN ops-nn:AIGC底层神经网络算力的核心优化引擎
人工智能·神经网络·aigc·cann
种时光的人20 分钟前
CANN仓库核心解读:ops-nn打造AIGC模型的神经网络算子核心支撑
人工智能·神经网络·aigc
晚霞的不甘22 分钟前
守护智能边界:CANN 的 AI 安全机制深度解析
人工智能·安全·语言模型·自然语言处理·前端框架
谢璞24 分钟前
中国AI最疯狂的一周:50亿金元肉搏,争夺未来的突围之战
人工智能