神经网络训练防止过拟合和欠拟合的方法

神经网络训练防止过拟合和欠拟合的方法

  • [1 过拟合的概念](#1 过拟合的概念)
  • [2 欠拟合的概念](#2 欠拟合的概念)
  • [3 防止过拟合和欠拟合的方法](#3 防止过拟合和欠拟合的方法)

1 过拟合的概念


如上图所示,模型在训练时表现较好,在验证或测试时,表现较差,即表示过拟合。

过拟合的本质是模型对训练样本过度学习,反而失去泛化能力,当发现过拟合时,一般说明模型的拟合能力没问题,但是泛化能力需要提高。

2 欠拟合的概念


如上图所示,模型在训练时准确率不到30%就开始饱和了,拟合效果很差,在测试时拟合效果同样更差,这种情况称为欠拟合。

3 防止过拟合和欠拟合的方法

  • 首先开发一个过拟合的模型,可以采取以下措施:

1.增加模型深度,添加更多层

2.让每一层变得更大,增加每一层的通道数或者神经元个数

3.训练更多轮数

  • 当出现过拟合时,可以采取以下措施:

1.减少神经元个数,如采用Dropout,随机丢弃一些神经元

2.批归一化,有助于数据分布均匀分布,设置批归一化后学习率可以加大,对参数初始值不敏感,加快训练速度,使网络更加稳定,类似于Dropout

  • 当模型不再过拟合时,再次调节超参数:

1.学习速率。 如果模型训练时,准确率或者损失变化缓慢,则需要调整学习率,越小的学习率,模型的准确率或者损失变化越慢

2.网络深度

3.隐藏层单元数,神经元个数或者卷积层通道数

4.训练轮数

5.增加训练样本,提高模型泛化能力

6.调节其他参数

相关推荐
一路向北he2 分钟前
esp32 arduino环境的搭建
人工智能
SmartBrain11 分钟前
Qwen3-VL 模型架构及原理详解
人工智能·语言模型·架构·aigc
renhongxia116 分钟前
AI算法实战:逻辑回归在风控场景中的应用
人工智能·深度学习·算法·机器学习·信息可视化·语言模型·逻辑回归
民乐团扒谱机24 分钟前
【AI笔记】精密光时频传递技术核心内容总结
人工智能·算法·光学频率梳
不惑_36 分钟前
通俗理解GAN的训练过程
人工智能·神经网络·生成对抗网络
OpenCSG1 小时前
对比分析:CSGHub vs. Hugging Face:模型管理平台选型对
人工智能·架构·开源
云上凯歌1 小时前
传统老旧系统的“AI 涅槃”:从零构建企业级 Agent 集群实战指南
人工智能
cskywit2 小时前
破解红外“魅影”难题:WMRNet 如何以频率分析与二阶差分重塑小目标检测?
人工智能·深度学习
无名修道院2 小时前
AI大模型应用开发-RAG 基础:向量数据库(FAISS/Milvus)、文本拆分、相似性搜索(“让模型查资料再回答”)
人工智能·向量数据库·rag·ai大模型应用开发
自可乐2 小时前
Milvus向量数据库/RAG基础设施学习教程
数据库·人工智能·python·milvus