神经网络训练防止过拟合和欠拟合的方法

神经网络训练防止过拟合和欠拟合的方法

  • [1 过拟合的概念](#1 过拟合的概念)
  • [2 欠拟合的概念](#2 欠拟合的概念)
  • [3 防止过拟合和欠拟合的方法](#3 防止过拟合和欠拟合的方法)

1 过拟合的概念


如上图所示,模型在训练时表现较好,在验证或测试时,表现较差,即表示过拟合。

过拟合的本质是模型对训练样本过度学习,反而失去泛化能力,当发现过拟合时,一般说明模型的拟合能力没问题,但是泛化能力需要提高。

2 欠拟合的概念


如上图所示,模型在训练时准确率不到30%就开始饱和了,拟合效果很差,在测试时拟合效果同样更差,这种情况称为欠拟合。

3 防止过拟合和欠拟合的方法

  • 首先开发一个过拟合的模型,可以采取以下措施:

1.增加模型深度,添加更多层

2.让每一层变得更大,增加每一层的通道数或者神经元个数

3.训练更多轮数

  • 当出现过拟合时,可以采取以下措施:

1.减少神经元个数,如采用Dropout,随机丢弃一些神经元

2.批归一化,有助于数据分布均匀分布,设置批归一化后学习率可以加大,对参数初始值不敏感,加快训练速度,使网络更加稳定,类似于Dropout

  • 当模型不再过拟合时,再次调节超参数:

1.学习速率。 如果模型训练时,准确率或者损失变化缓慢,则需要调整学习率,越小的学习率,模型的准确率或者损失变化越慢

2.网络深度

3.隐藏层单元数,神经元个数或者卷积层通道数

4.训练轮数

5.增加训练样本,提高模型泛化能力

6.调节其他参数

相关推荐
Codebee5 小时前
能力中心 (Agent SkillCenter):开启AI技能管理新时代
人工智能
聆风吟º6 小时前
CANN runtime 全链路拆解:AI 异构计算运行时的任务管理与功能适配技术路径
人工智能·深度学习·神经网络·cann
uesowys6 小时前
Apache Spark算法开发指导-One-vs-Rest classifier
人工智能·算法·spark
AI_56786 小时前
AWS EC2新手入门:6步带你从零启动实例
大数据·数据库·人工智能·机器学习·aws
User_芊芊君子6 小时前
CANN大模型推理加速引擎ascend-transformer-boost深度解析:毫秒级响应的Transformer优化方案
人工智能·深度学习·transformer
智驱力人工智能6 小时前
小区高空抛物AI实时预警方案 筑牢社区头顶安全的实践 高空抛物检测 高空抛物监控安装教程 高空抛物误报率优化方案 高空抛物监控案例分享
人工智能·深度学习·opencv·算法·安全·yolo·边缘计算
qq_160144877 小时前
亲测!2026年零基础学AI的入门干货,新手照做就能上手
人工智能
Howie Zphile7 小时前
全面预算管理难以落地的核心真相:“完美模型幻觉”的认知误区
人工智能·全面预算
人工不智能5777 小时前
拆解 BERT:Output 中的 Hidden States 到底藏了什么秘密?
人工智能·深度学习·bert
盟接之桥7 小时前
盟接之桥说制造:引流品 × 利润品,全球电商平台高效产品组合策略(供讨论)
大数据·linux·服务器·网络·人工智能·制造