神经网络训练防止过拟合和欠拟合的方法

神经网络训练防止过拟合和欠拟合的方法

  • [1 过拟合的概念](#1 过拟合的概念)
  • [2 欠拟合的概念](#2 欠拟合的概念)
  • [3 防止过拟合和欠拟合的方法](#3 防止过拟合和欠拟合的方法)

1 过拟合的概念


如上图所示,模型在训练时表现较好,在验证或测试时,表现较差,即表示过拟合。

过拟合的本质是模型对训练样本过度学习,反而失去泛化能力,当发现过拟合时,一般说明模型的拟合能力没问题,但是泛化能力需要提高。

2 欠拟合的概念


如上图所示,模型在训练时准确率不到30%就开始饱和了,拟合效果很差,在测试时拟合效果同样更差,这种情况称为欠拟合。

3 防止过拟合和欠拟合的方法

  • 首先开发一个过拟合的模型,可以采取以下措施:

1.增加模型深度,添加更多层

2.让每一层变得更大,增加每一层的通道数或者神经元个数

3.训练更多轮数

  • 当出现过拟合时,可以采取以下措施:

1.减少神经元个数,如采用Dropout,随机丢弃一些神经元

2.批归一化,有助于数据分布均匀分布,设置批归一化后学习率可以加大,对参数初始值不敏感,加快训练速度,使网络更加稳定,类似于Dropout

  • 当模型不再过拟合时,再次调节超参数:

1.学习速率。 如果模型训练时,准确率或者损失变化缓慢,则需要调整学习率,越小的学习率,模型的准确率或者损失变化越慢

2.网络深度

3.隐藏层单元数,神经元个数或者卷积层通道数

4.训练轮数

5.增加训练样本,提高模型泛化能力

6.调节其他参数

相关推荐
TGITCIC2 分钟前
AI Search进化论:从RAG到DeepSearch的智能体演变全过程
人工智能·ai大模型·ai智能体·ai搜索·大模型ai·deepsearch·ai search
lucky_lyovo3 小时前
自然语言处理NLP---预训练模型与 BERT
人工智能·自然语言处理·bert
fantasy_arch4 小时前
pytorch例子计算两张图相似度
人工智能·pytorch·python
AndrewHZ5 小时前
【3D重建技术】如何基于遥感图像和DEM等数据进行城市级高精度三维重建?
图像处理·人工智能·深度学习·3d·dem·遥感图像·3d重建
飞哥数智坊5 小时前
Coze实战第18讲:Coze+计划任务,我终于实现了企微资讯简报的定时推送
人工智能·coze·trae
Code_流苏6 小时前
AI热点周报(8.10~8.16):AI界“冰火两重天“,GPT-5陷入热议,DeepSeek R2模型训练受阻?
人工智能·gpt·gpt5·deepseek r2·ai热点·本周周报
赴3356 小时前
矿物分类案列 (一)六种方法对数据的填充
人工智能·python·机器学习·分类·数据挖掘·sklearn·矿物分类
大模型真好玩6 小时前
一文深度解析OpenAI近期发布系列大模型:意欲一统大模型江湖?
人工智能·python·mcp
双翌视觉6 小时前
工业视觉检测中的常见的四种打光方式
人工智能·计算机视觉·视觉检测
念念01076 小时前
基于MATLAB多智能体强化学习的出租车资源配置优化系统设计与实现
大数据·人工智能·matlab