在PyTorch里面利用transformers的Trainer微调预训练大模型

背景

transformers提供了非常便捷的api来进行大模型的微调,下面就讲一讲利用Trainer来微调大模型的步骤

第一步:加载预训练的大模型

python 复制代码
from transformers import AutoModelForSequenceClassification

model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased")

第二步:设置训练超参

python 复制代码
from transformers import TrainingArguments

training_args = TrainingArguments(
    output_dir="path/to/save/folder/",
    learning_rate=2e-5,
    per_device_train_batch_size=8,
    per_device_eval_batch_size=8,
    num_train_epochs=2,
)

比如这个里面设置了epoch等于2

第三步:获取分词器tokenizer

python 复制代码
from transformers import AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")

第四步:加载数据集

python 复制代码
from datasets import load_dataset

dataset = load_dataset("rotten_tomatoes")  # doctest: +IGNORE_RESULT

第五步:创建一个分词函数,指定数据集需要进行分词的字段:

python 复制代码
def tokenize_dataset(dataset):
    return tokenizer(dataset["text"])

第六步:调用map()来将该分词函数应用于整个数据集

python 复制代码
dataset = dataset.map(tokenize_dataset, batched=True)

第七步:使用DataCollatorWithPadding来批量填充数据,加速填充过程:

python 复制代码
from transformers import DataCollatorWithPadding

data_collator = DataCollatorWithPadding(tokenizer=tokenizer)

第八步:初始化Trainer

python 复制代码
from transformers import Trainer

trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=dataset["train"],
    eval_dataset=dataset["test"],
    tokenizer=tokenizer,
    data_collator=data_collator,
)  # doctest: +SKIP

第九步:开始训练

python 复制代码
trainer.train()

总结:

利用Trainer提供的api,只需要简简单单的九步,十几行代码就能进行大模型的微调,你要不要动手试一试?

相关推荐
szxinmai主板定制专家5 分钟前
【国产NI替代】基于FPGA的32通道(24bits)高精度终端采集核心板卡
大数据·人工智能·fpga开发
海棠AI实验室8 分钟前
AI的进阶之路:从机器学习到深度学习的演变(三)
人工智能·深度学习·机器学习
机器懒得学习19 分钟前
基于YOLOv5的智能水域监测系统:从目标检测到自动报告生成
人工智能·yolo·目标检测
QQ同步助手34 分钟前
如何正确使用人工智能:开启智慧学习与创新之旅
人工智能·学习·百度
AIGC大时代37 分钟前
如何使用ChatGPT辅助文献综述,以及如何进行优化?一篇说清楚
人工智能·深度学习·chatgpt·prompt·aigc
流浪的小新41 分钟前
【AI】人工智能、LLM学习资源汇总
人工智能·学习
martian6652 小时前
【人工智能数学基础篇】——深入详解多变量微积分:在机器学习模型中优化损失函数时应用
人工智能·机器学习·微积分·数学基础
人机与认知实验室3 小时前
人、机、环境中各有其神经网络系统
人工智能·深度学习·神经网络·机器学习
黑色叉腰丶大魔王3 小时前
基于 MATLAB 的图像增强技术分享
图像处理·人工智能·计算机视觉
迅易科技6 小时前
借助腾讯云质检平台的新范式,做工业制造企业质检的“AI慧眼”
人工智能·视觉检测·制造