在PyTorch里面利用transformers的Trainer微调预训练大模型

背景

transformers提供了非常便捷的api来进行大模型的微调,下面就讲一讲利用Trainer来微调大模型的步骤

第一步:加载预训练的大模型

python 复制代码
from transformers import AutoModelForSequenceClassification

model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased")

第二步:设置训练超参

python 复制代码
from transformers import TrainingArguments

training_args = TrainingArguments(
    output_dir="path/to/save/folder/",
    learning_rate=2e-5,
    per_device_train_batch_size=8,
    per_device_eval_batch_size=8,
    num_train_epochs=2,
)

比如这个里面设置了epoch等于2

第三步:获取分词器tokenizer

python 复制代码
from transformers import AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")

第四步:加载数据集

python 复制代码
from datasets import load_dataset

dataset = load_dataset("rotten_tomatoes")  # doctest: +IGNORE_RESULT

第五步:创建一个分词函数,指定数据集需要进行分词的字段:

python 复制代码
def tokenize_dataset(dataset):
    return tokenizer(dataset["text"])

第六步:调用map()来将该分词函数应用于整个数据集

python 复制代码
dataset = dataset.map(tokenize_dataset, batched=True)

第七步:使用DataCollatorWithPadding来批量填充数据,加速填充过程:

python 复制代码
from transformers import DataCollatorWithPadding

data_collator = DataCollatorWithPadding(tokenizer=tokenizer)

第八步:初始化Trainer

python 复制代码
from transformers import Trainer

trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=dataset["train"],
    eval_dataset=dataset["test"],
    tokenizer=tokenizer,
    data_collator=data_collator,
)  # doctest: +SKIP

第九步:开始训练

python 复制代码
trainer.train()

总结:

利用Trainer提供的api,只需要简简单单的九步,十几行代码就能进行大模型的微调,你要不要动手试一试?

相关推荐
飞哥数智坊9 小时前
GPT-5-Codex 发布,Codex 正在取代 Claude
人工智能·ai编程
倔强青铜三9 小时前
苦练Python第46天:文件写入与上下文管理器
人工智能·python·面试
虫无涯10 小时前
Dify Agent + AntV 实战:从 0 到 1 打造数据可视化解决方案
人工智能
Dm_dotnet12 小时前
公益站Agent Router注册送200刀额度竟然是真的
人工智能
算家计算12 小时前
7B参数拿下30个世界第一!Hunyuan-MT-7B本地部署教程:腾讯混元开源业界首个翻译集成模型
人工智能·开源
机器之心12 小时前
LLM开源2.0大洗牌:60个出局,39个上桌,AI Coding疯魔,TensorFlow已死
人工智能·openai
Juchecar13 小时前
交叉熵:深度学习中最常用的损失函数
人工智能
林木森ai13 小时前
爆款AI动物运动会视频,用Coze(扣子)一键搞定全流程(附保姆级拆解)
人工智能·aigc
聚客AI14 小时前
🙋‍♀️Transformer训练与推理全流程:从输入处理到输出生成
人工智能·算法·llm
BeerBear15 小时前
【保姆级教程-从0开始开发MCP服务器】一、MCP学习压根没有你想象得那么难!.md
人工智能·mcp