Pytorch源码编译Libtorch

创建虚拟环境:

shell 复制代码
conda create -n build-libtorch python=3.8
cd build-libtorch

安装相关依赖:

shell 复制代码
conda install astunparse numpy ninja pyyaml mkl mkl-include setuptools cmake cffi typing_extensions future six requests dataclasses

下载 Pytorch,可通过 HTTPSSSH 方式进行下载:

shell 复制代码
git clone https://github.com/pytorch/pytorch.git  # HTTPS
git clone git@github.com:pytorch/pytorch.git  # SSH

克隆下来的是最新版本,可根据需要切换不同版本:

shell 复制代码
cd pytorch
git tag  # 查看标签
git checkout v1.4.0  # 根据标签切换版本
git submodule sync  # 根据父仓库中的配置,将子模块的URL进行更新,以保证与父仓库中记录的URL一致。这样,当执行git submodule update命令时,Git就能正确地从指定的URL下载子模块的更新或特定版本的代码
git submodule update --init --recursive  # 初始化和更新父仓库中的子模块,并递归地初始化和更新所有嵌套的子模块

如果不能通过 HTTPS 方式更新子模块,可以通过 sudo gedit .gitmodules 命令打开 .gitmodules 文件,该文件中记录了子模块的存储路径和下载地址。打开文件后修改子模块的 url,例如将 url = https://github.com/pybind/pybind11.git 修改为 url = git@github.com:pybind/pybind11.git。所有子模块的 url 都修改好后,依次执行 git submodule syncgit submodule update --init --recursive

也可一步到位进行下载:

shell 复制代码
git clone -b v1.4.0 https://github.com/pytorch/pytorch.git
git clone -b v1.4.0 git@github.com:pytorch/pytorch.git

可根据需要设置编译选项:

shell 复制代码
export USE_CUDA=False
export BUILD_TEST=False
export USE_NINJA=OFF

执行编译:

shell 复制代码
方式一:
# 在pytorch目录下
mkdir build_libtorch && cd build_libtorch
python ../tools/build_libtorch.py

方式二:
# 在pytorch的父目录下
mkdir pytorch-build && cd pytorch-build
cmake -DBUILD_SHARED_LIBS:BOOL=ON -DCMAKE_BUILD_TYPE:STRING=Release -DPYTHON_EXECUTABLE:PATH=`which python3` -DCMAKE_INSTALL_PREFIX:PATH=../pytorch-install ../pytorch
cmake --build . --target install

新建 libtorch 目录,将 pytorch/torch/include 目录复制到 libtorch 目录下,将 build/lib 目录复制到 libtorch 目录下。

可能遇到的问题:

  1. 在执行 cmake 命令时,运行到 Performing Test COMPILER_SUPPORTS_LONG_DOUBLE 这一步就停止不动了,长时间没有反应,这很可能是 GCC 版本导致的问题,可尝试更换 GCC 版本来解决,更换的版本可以比之前更高,也可以更低,可以多尝试
  2. 出现 Could not run a simple program built with your compiler. If you are trying to use -fsanitize=address, make sure libasan is properly installed on your system (you can confirm if the problem is this by attempting to build and run a small program.) 问题,可尝试在 pytorch 目录下的 CMakeLists.txt 中设置 set(INTERN_BUILD_MOBILE ON) 来解决
相关推荐
小鸡吃米…1 小时前
机器学习 - K - 中心聚类
人工智能·机器学习·聚类
好奇龙猫1 小时前
【AI学习-comfyUI学习-第三十节-第三十一节-FLUX-SD放大工作流+FLUX图生图工作流-各个部分学习】
人工智能·学习
沈浩(种子思维作者)2 小时前
真的能精准医疗吗?癌症能提前发现吗?
人工智能·python·网络安全·健康医疗·量子计算
minhuan2 小时前
大模型应用:大模型越大越好?模型参数量与效果的边际效益分析.51
人工智能·大模型参数评估·边际效益分析·大模型参数选择
Cherry的跨界思维2 小时前
28、AI测试环境搭建与全栈工具实战:从本地到云平台的完整指南
java·人工智能·vue3·ai测试·ai全栈·测试全栈·ai测试全栈
MM_MS2 小时前
Halcon变量控制类型、数据类型转换、字符串格式化、元组操作
开发语言·人工智能·深度学习·算法·目标检测·计算机视觉·视觉检测
ASF1231415sd2 小时前
【基于YOLOv10n-CSP-PTB的大豆花朵检测与识别系统详解】
人工智能·yolo·目标跟踪
njsgcs2 小时前
ue python二次开发启动教程+ 导入fbx到指定文件夹
开发语言·python·unreal engine·ue
io_T_T2 小时前
迭代器 iteration、iter 与 多线程 concurrent 交叉实践(详细)
python
水如烟3 小时前
孤能子视角:“意识“的阶段性回顾,“感质“假说
人工智能