代码随想录算法训练营Day55 (Day 54休息) | 动态规划(15/17) LeetCode 392.判断子序列 115.不同的子序列

继续子序列的练习!

第一题

392. Is Subsequence

Given two strings s and t, return trueif sis a subsequence of t, or falseotherwise.

A subsequence of a string is a new string that is formed from the original string by deleting some (can be none) of the characters without disturbing the relative positions of the remaining characters. (i.e., "ace" is a subsequence of "++a++ b++c++ d++e++" while "aec" is not).

首先想到双指针的解法,复杂度为O(n),也能接受。不过既然在练习动态规划,就还是按照动态规划的思路去解。

在确定递推公式的时候,首先要考虑如下两种操作,整理如下:

  • if (s[i - 1] == t[j - 1])
    • t中找到了一个字符在s中也出现了
  • if (s[i - 1] != t[j - 1])
    • 相当于t要删除元素,继续匹配

if (s[i - 1] == t[j - 1]),那么dp[i][j] = dp[i - 1][j - 1] + 1;,因为找到了一个相同的字符,相同子序列长度自然要在dp[i-1][j-1]的基础上加1

if (s[i - 1] != t[j - 1]),此时相当于t要删除元素,t如果把当前元素t[j - 1]删除,那么dp[i][j] 的数值就是 看s[i - 1]与 t[j - 2]的比较结果了,即:dp[i][j] = dp[i][j - 1];

python 复制代码
class Solution:
    def isSubsequence(self, s: str, t: str) -> bool:
        dp = [[0] * (len(t)+1) for _ in range(len(s)+1)]
        for i in range(1, len(s)+1):
            for j in range(1, len(t)+1):
                if s[i-1] == t[j-1]:
                    dp[i][j] = dp[i-1][j-1] + 1
                else:
                    dp[i][j] = dp[i][j-1]
        if dp[-1][-1] == len(s):
            return True
        return False

第二题

115. Distinct Subsequences

Given two strings s and t, return the number of distinct subsequences of swhich equalst.

The test cases are generated so that the answer fits on a 32-bit signed integer.

这道题双指针就没法做了,只能用动态规划。

递推公式为:dp[i][j] = dp[i - 1][j];

从递推公式dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j]; 和 dp[i][j] = dp[i - 1][j]; 中可以看出dp[i][j] 是从上方和左上方推导而来,那么 dp[i][0] 和dp[0][j]是一定要初始化的。

python 复制代码
class Solution:
    def numDistinct(self, s: str, t: str) -> int:
        n1, n2 = len(s), len(t)
        if n1 < n2:
            return 0

        dp = [0 for _ in range(n2 + 1)]
        dp[0] = 1

        for i in range(1, n1 + 1):

            prev = dp.copy()
            end = i if i < n2 else n2
            for j in range(1, end + 1):
                if s[i - 1] == t[j - 1]:
                    dp[j] = prev[j - 1] + prev[j]
                else:
                    dp[j] = prev[j]
        return dp[-1]
相关推荐
wan5555cn3 分钟前
多张图片生成视频模型技术深度解析
人工智能·笔记·深度学习·算法·音视频
u60630 分钟前
常用排序算法核心知识点梳理
算法·排序
蒋星熠3 小时前
Flutter跨平台工程实践与原理透视:从渲染引擎到高质产物
开发语言·python·算法·flutter·设计模式·性能优化·硬件工程
小欣加油3 小时前
leetcode 面试题01.02判定是否互为字符重排
数据结构·c++·算法·leetcode·职场和发展
3Cloudream3 小时前
LeetCode 003. 无重复字符的最长子串 - 滑动窗口与哈希表详解
算法·leetcode·字符串·双指针·滑动窗口·哈希表·中等
王璐WL3 小时前
【c++】c++第一课:命名空间
数据结构·c++·算法
空白到白4 小时前
机器学习-聚类
人工智能·算法·机器学习·聚类
索迪迈科技4 小时前
java后端工程师进修ing(研一版 || day40)
java·开发语言·学习·算法
zzzsde4 小时前
【数据结构】队列
数据结构·算法
芒克芒克4 小时前
LeetCode 面试经典 150 题:删除有序数组中的重复项(双指针思想解法详解)
算法