[HDLBits] Conwaylife

Conway's Game of Life is a two-dimensional cellular automaton.

The "game" is played on a two-dimensional grid of cells, where each cell is either 1 (alive) or 0 (dead). At each time step, each cell changes state depending on how many neighbours it has:

  • 0-1 neighbour: Cell becomes 0.
  • 2 neighbours: Cell state does not change.
  • 3 neighbours: Cell becomes 1.
  • 4+ neighbours: Cell becomes 0.

The game is formulated for an infinite grid. In this circuit, we will use a 16x16 grid. To make things more interesting, we will use a 16x16 toroid, where the sides wrap around to the other side of the grid. For example, the corner cell (0,0) has 8 neighbours: (15,1), (15,0), (15,15), (0,1), (0,15), (1,1), (1,0), and (1,15). The 16x16 grid is represented by a length 256 vector, where each row of 16 cells is represented by a sub-vector: q[15:0] is row 0, q[31:16] is row 1, etc. (This tool accepts SystemVerilog, so you may use 2D vectors if you wish.)

  • load: Loads data into q at the next clock edge, for loading initial state.
  • q: The 16x16 current state of the game, updated every clock cycle.

The game state should advance by one timestep every clock cycle.

John Conway, mathematician and creator of the Game of Life cellular automaton, passed away from COVID-19 on April 11, 2020.

复制代码
buhuizuo
相关推荐
风_峰2 天前
Ubuntu Linux SD卡分区操作
嵌入式硬件·ubuntu·fpga开发
FPGA_Linuxer2 天前
FPGA 40 DAC线缆和光模块带光纤实现40G UDP差异
网络协议·fpga开发·udp
风_峰2 天前
Petalinux相关配置——ZYNQ通过eMMC启动
嵌入式硬件·ubuntu·fpga开发
风_峰2 天前
【ZYNQ开发篇】Petalinux和电脑端的静态ip地址配置
网络·嵌入式硬件·tcp/ip·ubuntu·fpga开发
碎碎思3 天前
一块板子,玩转 HDMI、USB、FPGA ——聊聊开源项目 HDMI2USB-Numato-Opsis
fpga开发
ooo-p3 天前
FPGA学习篇——Verilog学习Led灯的实现
学习·fpga开发
嵌入式-老费3 天前
Zynq开发实践(FPGA之选择开发板)
fpga开发
风_峰3 天前
PuTTY软件访问ZYNQ板卡的Linux系统
linux·服务器·嵌入式硬件·fpga开发
电子凉冰3 天前
FPGA入门-状态机
fpga开发
Aczone283 天前
硬件(十)IMX6ULL 中断与时钟配置
arm开发·单片机·嵌入式硬件·fpga开发