【数据增强】

【数据增强】

  • [1 数据增强的情形](#1 数据增强的情形)
  • [2 数据增强的方法](#2 数据增强的方法)

1 数据增强的情形

当数据比较小,难以获取新的训练数据时,可以考虑数据增强,如随机裁剪部分,随机左右上下翻转、随机旋转一个角度、随机亮度变化等微小变化,数据的多样性提高,数据集本身大小未变,只是做了微小调整送入网络。

数据增强数据有限的情况下,可以增加样本的多样性、抑制过拟合,提高正确率。

2 数据增强的方法

torchvision提供了诸多随机改变图片的方法:

复制代码
transforms.RandomCrop    # 随机位置裁剪  transforms.CenterCrop
transforms.RandomHorizontalFlip(p=1)   # 随机水平翻转
transforms.RandomVerticalFlip(p=1)     # 随机上下翻转
transforms.RandomRotation
transforms.ColorJitter(brightness=1)
transforms.ColorJitter(contrast=1)
transforms.ColorJitter(saturation=0.5)
transforms.ColorJitter(hue=0.5)
tansforms.RandomGrayscale(p=0.5)     # 随机灰度化

如随机裁剪图片:

python 复制代码
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
import torchvision
import glob
from torchvision import transforms
from torch.utils import data
from PIL import Image

pil_img = Image.open('dataset2/cloudy134.jpg')	#自定义路径
transform = transforms.Compose([
        transforms.Resize((256, 256)),
        transforms.RandomCrop((224, 224))
])


plt.figure(figsize=(12, 8))
for i in range(6):
    img = transform(pil_img)
    plt.subplot(2, 3, i+1)
    plt.imshow(img)
plt.subplots_adjust(wspace=0.15, hspace=0.15)
plt.savefig('pics/5_0.jpg') #自定义路径

随机水平翻转:

python 复制代码
pil_img = Image.open('dataset2/cloudy134.jpg')
trans_img = transforms.RandomHorizontalFlip(p=1)(pil_img) 
plt.figure(figsize=(12, 6))
plt.subplot(1, 2, 1)
plt.imshow(pil_img)
plt.subplot(1, 2, 2)
plt.imshow(trans_img)
plt.show()
plt.savefig('pics/5_1.jpg')

随机亮度调整:
注意:这里的区间设置不宜过大,否则图片容易变化过大,导致失真

python 复制代码
pil_img = Image.open('dataset2/cloudy134.jpg')
transform = transforms.Compose([
        transforms.Resize((256, 256)),
        transforms.ColorJitter(brightness=(0.7, 1.3), contrast=(0.7, 1.3), saturation=(0.7, 1.3), hue=(-0.05, 0.05))
])
plt.figure(figsize=(12, 8))
for i in range(6):
    img = transform(pil_img)
    plt.subplot(2, 3, i+1)
    plt.imshow(img)
plt.subplots_adjust(wspace=0.15, hspace=0.15)
plt.savefig('pics/5_2.jpg')
相关推荐
强哥之神1 小时前
英伟达发布 Llama Nemotron Nano 4B:专为边缘 AI 和科研任务优化的高效开源推理模型
人工智能·深度学习·语言模型·架构·llm·transformer·边缘计算
Green1Leaves1 小时前
pytorch学习-9.多分类问题
人工智能·pytorch·学习
陈敬雷-充电了么-CEO兼CTO3 小时前
大模型技术原理 - 基于Transformer的预训练语言模型
人工智能·深度学习·语言模型·自然语言处理·chatgpt·aigc·transformer
旷世奇才李先生3 小时前
Pillow 安装使用教程
深度学习·microsoft·pillow
acstdm7 小时前
DAY 48 CBAM注意力
人工智能·深度学习·机器学习
澪-sl7 小时前
基于CNN的人脸关键点检测
人工智能·深度学习·神经网络·计算机视觉·cnn·视觉检测·卷积神经网络
羊小猪~~7 小时前
数据库学习笔记(十七)--触发器的使用
数据库·人工智能·后端·sql·深度学习·mysql·考研
摸爬滚打李上进7 小时前
重生学AI第十六集:线性层nn.Linear
人工智能·pytorch·python·神经网络·机器学习
HuashuiMu花水木7 小时前
PyTorch笔记1----------Tensor(张量):基本概念、创建、属性、算数运算
人工智能·pytorch·笔记
视觉语言导航9 小时前
RAL-2025 | 清华大学数字孪生驱动的机器人视觉导航!VR-Robo:面向视觉机器人导航与运动的现实-模拟-现实框架
人工智能·深度学习·机器人·具身智能