【数据增强】

【数据增强】

  • [1 数据增强的情形](#1 数据增强的情形)
  • [2 数据增强的方法](#2 数据增强的方法)

1 数据增强的情形

当数据比较小,难以获取新的训练数据时,可以考虑数据增强,如随机裁剪部分,随机左右上下翻转、随机旋转一个角度、随机亮度变化等微小变化,数据的多样性提高,数据集本身大小未变,只是做了微小调整送入网络。

数据增强数据有限的情况下,可以增加样本的多样性、抑制过拟合,提高正确率。

2 数据增强的方法

torchvision提供了诸多随机改变图片的方法:

复制代码
transforms.RandomCrop    # 随机位置裁剪  transforms.CenterCrop
transforms.RandomHorizontalFlip(p=1)   # 随机水平翻转
transforms.RandomVerticalFlip(p=1)     # 随机上下翻转
transforms.RandomRotation
transforms.ColorJitter(brightness=1)
transforms.ColorJitter(contrast=1)
transforms.ColorJitter(saturation=0.5)
transforms.ColorJitter(hue=0.5)
tansforms.RandomGrayscale(p=0.5)     # 随机灰度化

如随机裁剪图片:

python 复制代码
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
import torchvision
import glob
from torchvision import transforms
from torch.utils import data
from PIL import Image

pil_img = Image.open('dataset2/cloudy134.jpg')	#自定义路径
transform = transforms.Compose([
        transforms.Resize((256, 256)),
        transforms.RandomCrop((224, 224))
])


plt.figure(figsize=(12, 8))
for i in range(6):
    img = transform(pil_img)
    plt.subplot(2, 3, i+1)
    plt.imshow(img)
plt.subplots_adjust(wspace=0.15, hspace=0.15)
plt.savefig('pics/5_0.jpg') #自定义路径

随机水平翻转:

python 复制代码
pil_img = Image.open('dataset2/cloudy134.jpg')
trans_img = transforms.RandomHorizontalFlip(p=1)(pil_img) 
plt.figure(figsize=(12, 6))
plt.subplot(1, 2, 1)
plt.imshow(pil_img)
plt.subplot(1, 2, 2)
plt.imshow(trans_img)
plt.show()
plt.savefig('pics/5_1.jpg')

随机亮度调整:
注意:这里的区间设置不宜过大,否则图片容易变化过大,导致失真

python 复制代码
pil_img = Image.open('dataset2/cloudy134.jpg')
transform = transforms.Compose([
        transforms.Resize((256, 256)),
        transforms.ColorJitter(brightness=(0.7, 1.3), contrast=(0.7, 1.3), saturation=(0.7, 1.3), hue=(-0.05, 0.05))
])
plt.figure(figsize=(12, 8))
for i in range(6):
    img = transform(pil_img)
    plt.subplot(2, 3, i+1)
    plt.imshow(img)
plt.subplots_adjust(wspace=0.15, hspace=0.15)
plt.savefig('pics/5_2.jpg')
相关推荐
njsgcs32 分钟前
dqn和cnn有什么区别 dqn怎么保存训练经验到本地
人工智能·神经网络·cnn
weixin_395448911 小时前
排查流程啊啊啊
人工智能·深度学习·机器学习
是小蟹呀^2 小时前
卷积神经网络(CNN):卷积操作
人工智能·神经网络·cnn
DN20202 小时前
AI销售机器人:节日祝福转化率提升30倍
人工智能·python·深度学习·机器学习·机器人·节日
香芋Yu2 小时前
【大模型教程——第二部分:Transformer架构揭秘】第2章:模型家族谱系:从编码器到解码器 (Model Architectures)
深度学习·架构·transformer
爱喝可乐的老王2 小时前
PyTorch简介与安装
人工智能·pytorch·python
deephub2 小时前
用 PyTorch 实现 LLM-JEPA:不预测 token,预测嵌入
人工智能·pytorch·python·深度学习·大语言模型
飞鹰513 小时前
深度学习算子CUDA优化实战:从GEMM到Transformer—Week4学习总结
c++·人工智能·深度学习·学习·transformer
工程师老罗3 小时前
Pytorch如何验证模型?
人工智能·pytorch·深度学习
zhangfeng11333 小时前
Ollama 支持模型微调但是不支持词库,支持RAG,go语言开发的大模型的推理应用,
人工智能·深度学习·golang