【数据增强】

【数据增强】

  • [1 数据增强的情形](#1 数据增强的情形)
  • [2 数据增强的方法](#2 数据增强的方法)

1 数据增强的情形

当数据比较小,难以获取新的训练数据时,可以考虑数据增强,如随机裁剪部分,随机左右上下翻转、随机旋转一个角度、随机亮度变化等微小变化,数据的多样性提高,数据集本身大小未变,只是做了微小调整送入网络。

数据增强数据有限的情况下,可以增加样本的多样性、抑制过拟合,提高正确率。

2 数据增强的方法

torchvision提供了诸多随机改变图片的方法:

复制代码
transforms.RandomCrop    # 随机位置裁剪  transforms.CenterCrop
transforms.RandomHorizontalFlip(p=1)   # 随机水平翻转
transforms.RandomVerticalFlip(p=1)     # 随机上下翻转
transforms.RandomRotation
transforms.ColorJitter(brightness=1)
transforms.ColorJitter(contrast=1)
transforms.ColorJitter(saturation=0.5)
transforms.ColorJitter(hue=0.5)
tansforms.RandomGrayscale(p=0.5)     # 随机灰度化

如随机裁剪图片:

python 复制代码
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
import torchvision
import glob
from torchvision import transforms
from torch.utils import data
from PIL import Image

pil_img = Image.open('dataset2/cloudy134.jpg')	#自定义路径
transform = transforms.Compose([
        transforms.Resize((256, 256)),
        transforms.RandomCrop((224, 224))
])


plt.figure(figsize=(12, 8))
for i in range(6):
    img = transform(pil_img)
    plt.subplot(2, 3, i+1)
    plt.imshow(img)
plt.subplots_adjust(wspace=0.15, hspace=0.15)
plt.savefig('pics/5_0.jpg') #自定义路径

随机水平翻转:

python 复制代码
pil_img = Image.open('dataset2/cloudy134.jpg')
trans_img = transforms.RandomHorizontalFlip(p=1)(pil_img) 
plt.figure(figsize=(12, 6))
plt.subplot(1, 2, 1)
plt.imshow(pil_img)
plt.subplot(1, 2, 2)
plt.imshow(trans_img)
plt.show()
plt.savefig('pics/5_1.jpg')

随机亮度调整:
注意:这里的区间设置不宜过大,否则图片容易变化过大,导致失真

python 复制代码
pil_img = Image.open('dataset2/cloudy134.jpg')
transform = transforms.Compose([
        transforms.Resize((256, 256)),
        transforms.ColorJitter(brightness=(0.7, 1.3), contrast=(0.7, 1.3), saturation=(0.7, 1.3), hue=(-0.05, 0.05))
])
plt.figure(figsize=(12, 8))
for i in range(6):
    img = transform(pil_img)
    plt.subplot(2, 3, i+1)
    plt.imshow(img)
plt.subplots_adjust(wspace=0.15, hspace=0.15)
plt.savefig('pics/5_2.jpg')
相关推荐
Coovally AI模型快速验证5 小时前
农田扫描提速37%!基于检测置信度的无人机“智能抽查”路径规划,Coovally一键加速模型落地
深度学习·算法·yolo·计算机视觉·transformer·无人机
RaymondZhao346 小时前
【全面推导】策略梯度算法:公式、偏差方差与进化
人工智能·深度学习·算法·机器学习·chatgpt
Caven777 小时前
【pytorch】reshape的使用
pytorch·python
无规则ai7 小时前
动手学深度学习(pytorch版):第四章节—多层感知机(5)权重衰减
人工智能·pytorch·python·深度学习
网安INF8 小时前
【论文阅读】-《HopSkipJumpAttack: A Query-Efficient Decision-Based Attack》
论文阅读·人工智能·深度学习·网络安全·对抗攻击
雷达学弱狗10 小时前
backward怎么计算的是torch.tensor(2.0, requires_grad=True)变量的梯度
人工智能·pytorch·深度学习
CoovallyAIHub10 小时前
为高空安全上双保险!无人机AI护航,YOLOv5秒判安全带,守护施工生命线
深度学习·算法·计算机视觉
有Li11 小时前
CLIK-Diffusion:用于牙齿矫正的临床知识感知扩散模型|文献速递-深度学习人工智能医疗图像
人工智能·深度学习·文献·医学生
nju_spy12 小时前
机器学习 - Kaggle项目实践(4)Toxic Comment Classification Challenge 垃圾评论分类问题
人工智能·深度学习·自然语言处理·tf-idf·南京大学·glove词嵌入·双头gru
计算机sci论文精选12 小时前
CVPR 2025 | 具身智能 | HOLODECK:一句话召唤3D世界,智能体的“元宇宙练功房”来了
人工智能·深度学习·机器学习·计算机视觉·机器人·cvpr·具身智能