数据仓库&数据库

在当今的数字化时代,数据存储和管理是非常重要的领域。数据仓库和数据库是两个重要的数据存储和管理工具,它们有着不同的特点和用途。

一、数据仓库与数据库的定义

1. 数据仓库

数据仓库,是为企业所有级别的决策制定过程,提供所有类型数据支持的战略集合。它是单个数据存储,出于分析性报告和决策支持目的而创建。 为需要业务智能的企业,提供指导业务流程改进、监视时间、成本、质量以及控制。

数据仓库一般针对于某些主题的历史数据进行分析,支持管理决策,又被称为联机分析处理。数据仓库的出现不是要取代数据库的。

2. 数据库

数据库是存放数据的仓库 。它的存储空间很大,可以存放百万条、千万条、上亿条数据。但是数据库并不是随意地将数据进行存放,是有一定的规则的,否则查询的效率会很低。当今世界是一个充满着数据的互联网世界,充斥着大量的数据。即这个互联网世界就是数据世界。数据的来源有很多,比如出行记录、消费记录、浏览的网页、发送的消息等等。除了文本类型的数据,图像、音乐、声音都是数据。

数据库是一个按数据结构来存储和管理数据的计算机软件系统。

数据库是面向交易的处理系统。它是针对具体业务在数据库联机的日常操作,通常对记录进行查询、修改。用户较为关心操作的响应时间、数据的安全性、完整性和并发支持的用户等问题。

二、数据仓库与数据库的区别

  1. 设计点

数据库是面向事务的设计,数据仓库是面向主题设计的;数据库设计尽量避免

  1. 数据类型

数据库一般存储的是业务数据,而数据仓库存储的一般是历史数据。

  1. 数据规模

数据库则更适合处理中等到小规模的数据集,根据实际需求进行存储和管理。而数据仓库主要用于处理和分析大规模的数据集,通常涉及数以百万计的数据记录。

  1. 数据来源

数据库的数据来源主要是操作性系统和文件等,相对单一,而数据仓库的数据源通常涉及多个数据源,例如操作型系统、文件、网络数据等。

三、举例

数据库是事务系统的数据平台,客户在银行做的每笔交易都会写入数据库,被记录下来,这里,可以简单地理解为用数据库记账。而数据仓库是分析系统的数据平台,它从事务系统获取数据,并做汇总、加工,为决策者提供决策的依据。比如,某银行某分行一个月发生多少交易,该分行当前存款余额是多少。如果存款又多,消费交易又多,那么该地区就有必要设立 ATM了。

显然,银行的交易量是巨大的,通常以百万甚至千万次来计算。事务系统是实时的,这就要求时效性,客户存一笔钱需要几十秒是无法忍受的,这就要求数据库只能存储很短一段时间的数据。而分析系统是事后的,它要提供关注时间段内所有的有效数据。这些数据是海量的,汇总计算起来也要慢一些,但是,只要能够提供有效的分析数据就达到目的了。(数据仓库,是在数据库已经大量存在的情况下,为了进一步挖掘数据资源、为了决策需要而产生的,它决不是所谓的"大型数据库"。)

相关推荐
心疼你的一切3 分钟前
解密CANN仓库:AIGC的算力底座、关键应用与API实战解析
数据仓库·深度学习·aigc·cann
忆~遂愿8 分钟前
ops-cv 算子库深度解析:面向视觉任务的硬件优化与数据布局(NCHW/NHWC)策略
java·大数据·linux·人工智能
忆~遂愿44 分钟前
GE 引擎与算子版本控制:确保前向兼容性与图重写策略的稳定性
大数据·开发语言·docker
麦聪聊数据1 小时前
Web 原生架构如何重塑企业级数据库协作流?
数据库·sql·低代码·架构
未来之窗软件服务1 小时前
数据库优化提速(四)新加坡房产系统开发数据库表结构—仙盟创梦IDE
数据库·数据库优化·计算机软考
米羊1211 小时前
已有安全措施确认(上)
大数据·网络
人道领域2 小时前
AI抢人大战:谁在收割你的红包
大数据·人工智能·算法
Goat恶霸詹姆斯2 小时前
mysql常用语句
数据库·mysql·oracle
qq_12498707532 小时前
基于Hadoop的信贷风险评估的数据可视化分析与预测系统的设计与实现(源码+论文+部署+安装)
大数据·人工智能·hadoop·分布式·信息可视化·毕业设计·计算机毕业设计
Hello.Reader3 小时前
Flink 使用 Amazon S3 读写、Checkpoint、插件选择与性能优化
大数据·flink