线性代数(七) 矩阵分析

前言

性线变换我们得出,矩阵和函数是密不可分的。如何用函数的思维来分析矩阵。

矩阵的序列

通过这个定义我们就定义了矩阵序列的收敛性

研究矩阵序列收敛性的常用方法,是用《常见向量范数和矩阵范数》来研究矩阵序列的极限。

长度是范数的一个特例。事实上,Frobenius范数对应的就是长度。我们在线性空间中定义内积时,就是把这三条性质作为公理来定义内积的

收敛矩阵

在矩阵序列中,最常见的是由一个方阵的幂构成的序列,关于这样的矩阵序列有如下概念和收敛定理:

r(A)是谱半径是一个矩阵的特征值绝对值中的最大值,用于描述矩阵的特征值的尺度大小。

矩阵级数


矩阵幂级数

  1. 根据幂级数收敛半径定理求出收敛半径r
  2. 根据《常见向量范数和矩阵范数》将矩阵A量化,看否在收敛区间中
  • 即 a k = k = > r = lim ⁡ k → ∞ | a k + 1 a k | = | k + 1 k | = 1 a_k= k => r= \lim\limits_{k \to \infty} |\dfrac{a_{k+1}}{a_k}|=|\dfrac{{k+1}}{k}|= 1 ak=k=>r=k→∞lim|akak+1|=|kk+1|=1
  • 由范式2得到 p ( A ) = 5 6 p(A)=\dfrac{5}{6} p(A)=65

Neumann级数


  • 注1:假设E-A不可逆,那么E-A有0特征值,A的特征值为1。而A的谱半径小于1,矛盾,故E-A可逆
  • 注2:A的谱半径小于1,由定理3可知A为收敛矩阵。那么 A k + 1 A^{k+1} Ak+1 就趋近于0(k趋于无穷)

矩阵函数

矩阵函数的计算

常用的有以下几种方法

待定系数法
  • 求矩阵A的特征多项式 ∣ λ I − A ∣ |\lambda I - A| ∣λI−A∣
  • 利用Hamilton-Cayley定理,求出A的一次性化零多项式 ψ ( A ) = 0 \psi(A)=0 ψ(A)=0 - 求解 f ( A ) f(A) f(A)多项式
  • 当 A = λ ,即 ψ ( A ) = f ( A ) A=\lambda, 即\psi(A)=f(A) A=λ,即ψ(A)=f(A)
  • sin的导注是cos
  • e x e^x ex的导数是它本身的导数,因此, e ( 2 t ) 的导数是 2 e ( 2 t ) e^(2t) 的导数是 2e^(2t) e(2t)的导数是2e(2t)。
利用相似对角化
利用Jordan标准形

主要参考

常见向量范数和矩阵范数

矩阵分析

7.2.3幂级数收敛半径定理

矩阵序列与矩阵级数

矩阵函数的常见求法

相关推荐
SY师弟3 小时前
51单片机基础部分——矩阵按键检测
嵌入式硬件·矩阵·51单片机
Yxh181377845543 小时前
抖去推--短视频矩阵系统源码开发
人工智能·python·矩阵
Psycho_MrZhang9 小时前
高等数学基础(矩阵基本操作转置和逆矩阵)
线性代数·矩阵
狐凄10 小时前
Python实例题:Python计算线性代数
开发语言·python·线性代数
天宫风子10 小时前
线性代数小述(二之前)
线性代数
Bruce_Liuxiaowei20 小时前
文件上传漏洞深度解析:检测与绕过技术矩阵
安全·矩阵·文件上传漏洞
天宫风子1 天前
线性代数小述(一)
线性代数·算法·矩阵·抽象代数
老歌老听老掉牙1 天前
使用 SymPy 进行向量和矩阵的高级操作
python·线性代数·算法·矩阵·sympy
sz66cm1 天前
LeetCode刷题 -- 542. 01矩阵 基于 DFS 更新优化的多源最短路径实现
leetcode·矩阵·深度优先
fen_fen1 天前
学习笔记(25):线性代数,矩阵-矩阵乘法原理
笔记·学习·线性代数