线性代数(七) 矩阵分析

前言

性线变换我们得出,矩阵和函数是密不可分的。如何用函数的思维来分析矩阵。

矩阵的序列

通过这个定义我们就定义了矩阵序列的收敛性

研究矩阵序列收敛性的常用方法,是用《常见向量范数和矩阵范数》来研究矩阵序列的极限。

长度是范数的一个特例。事实上,Frobenius范数对应的就是长度。我们在线性空间中定义内积时,就是把这三条性质作为公理来定义内积的

收敛矩阵

在矩阵序列中,最常见的是由一个方阵的幂构成的序列,关于这样的矩阵序列有如下概念和收敛定理:

r(A)是谱半径是一个矩阵的特征值绝对值中的最大值,用于描述矩阵的特征值的尺度大小。

矩阵级数


矩阵幂级数

  1. 根据幂级数收敛半径定理求出收敛半径r
  2. 根据《常见向量范数和矩阵范数》将矩阵A量化,看否在收敛区间中
  • 即 a k = k = > r = lim ⁡ k → ∞ | a k + 1 a k | = | k + 1 k | = 1 a_k= k => r= \lim\limits_{k \to \infty} |\dfrac{a_{k+1}}{a_k}|=|\dfrac{{k+1}}{k}|= 1 ak=k=>r=k→∞lim|akak+1|=|kk+1|=1
  • 由范式2得到 p ( A ) = 5 6 p(A)=\dfrac{5}{6} p(A)=65

Neumann级数


  • 注1:假设E-A不可逆,那么E-A有0特征值,A的特征值为1。而A的谱半径小于1,矛盾,故E-A可逆
  • 注2:A的谱半径小于1,由定理3可知A为收敛矩阵。那么 A k + 1 A^{k+1} Ak+1 就趋近于0(k趋于无穷)

矩阵函数

矩阵函数的计算

常用的有以下几种方法

待定系数法
  • 求矩阵A的特征多项式 ∣ λ I − A ∣ |\lambda I - A| ∣λI−A∣
  • 利用Hamilton-Cayley定理,求出A的一次性化零多项式 ψ ( A ) = 0 \psi(A)=0 ψ(A)=0 - 求解 f ( A ) f(A) f(A)多项式
  • 当 A = λ ,即 ψ ( A ) = f ( A ) A=\lambda, 即\psi(A)=f(A) A=λ,即ψ(A)=f(A)
  • sin的导注是cos
  • e x e^x ex的导数是它本身的导数,因此, e ( 2 t ) 的导数是 2 e ( 2 t ) e^(2t) 的导数是 2e^(2t) e(2t)的导数是2e(2t)。
利用相似对角化
利用Jordan标准形

主要参考

常见向量范数和矩阵范数

矩阵分析

7.2.3幂级数收敛半径定理

矩阵序列与矩阵级数

矩阵函数的常见求法

相关推荐
愚公搬代码7 小时前
【愚公系列】《AI+直播营销》015-直播的选品策略(设计直播产品矩阵)
人工智能·线性代数·矩阵
paixingbang10 小时前
2026短视频矩阵服务商评测报告 星链引擎、河南云罗、数阶智能
大数据·线性代数·矩阵
scott19851210 小时前
NVIDIA GPU内部结构:高性能矩阵乘法内核剖析
线性代数·矩阵·gpu·nvidia·cuda
AI科技星14 小时前
能量绝对性与几何本源:统一场论能量方程的第一性原理推导、验证与范式革命
服务器·人工智能·科技·线性代数·算法·机器学习·生活
sunfove15 小时前
上帝的乐谱:从线性代数视角重构傅里叶变换 (FT) 的数学表达式
线性代数·机器学习·重构
victory04312 天前
pytorch 矩阵乘法和实际存储形状的差异
人工智能·pytorch·矩阵
AI科技星2 天前
引力与电磁的动力学耦合:变化磁场产生引力场与电场方程的第一性原理推导、验证与统一性意义
服务器·人工智能·科技·线性代数·算法·机器学习·生活
todoitbo2 天前
从零搭建鲲鹏 HPC 环境:从朴素矩阵乘法到高性能实现
线性代数·矩阵·鲲鹏·昇腾
lingzhilab2 天前
零知IDE——基于STMF103RBT6结合PAJ7620U2手势控制192位WS2812 RGB立方体矩阵
c++·stm32·矩阵
你要飞2 天前
Part 2 矩阵
笔记·线性代数·考研·矩阵