NLP 04(GRU)

一、GRU

GRU (Gated Recurrent Unit)也称门控循环单元结构,它也是传统RNN的变体,同LSTM一样能够有效捕捉长序列之间的语义关联缓解梯度消失或爆炸现象同时它的结构和计算要比LSTM更简单,它的核心结构可以分为两个部分去解析:

更新门、重置门

GRU的内部结构图和计算公式:

1.1 更新门&重置门

Bi-GRU与Bi-LSTM的逻辑相同,都是不改变其内部结构,而是将模型应用两次且方向不同,再将两次得到的LSTM结果进行拼接作为最终输出

二、GRU优缺点

  • 优点

GRU和LSTM作用相同,在捕捉长序列语义关联时,能有效抑制梯度消失或爆炸,效果都优于传统RNN且计算复杂度相比LSTM要小

  • 缺点

GRU仍然不能完全解决梯度消失问题,同时其作用RNN的变体,有着RNN结构本身的一大弊端,即不可并行计算,这在数据量和模型体量逐步增大的未来,是RNN发展的关键瓶颈。

相关推荐
WWZZ202511 分钟前
快速上手大模型:深度学习13(文本预处理、语言模型、RNN、GRU、LSTM、seq2seq)
人工智能·深度学习·算法·语言模型·自然语言处理·大模型·具身智能
老友@24 分钟前
RAG 的诞生:为了让 AI 不再“乱编”
人工智能·搜索引擎·ai·语言模型·自然语言处理·rag
枯木逢秋࿐1 小时前
深度学习常用模型
深度学习
Ma0407132 小时前
【论文阅读19】-用于PHM的大型语言模型:优化技术与应用综述
人工智能·语言模型·自然语言处理
哥布林学者3 小时前
吴恩达深度学习课程三: 结构化机器学习项目 第一周:机器学习策略(一)正交化调优和评估指标
深度学习·ai
Petrichor_H_4 小时前
DAY 39 图像数据与显存
人工智能·深度学习
小殊小殊4 小时前
【论文笔记】视频RAG-Vgent:基于图结构的视频检索推理框架
论文阅读·人工智能·深度学习
hans汉斯5 小时前
【数据挖掘】基于深度学习的生产车间智能管控研究
人工智能·深度学习·数据挖掘
brave and determined5 小时前
可编程逻辑器件学习(day34):半导体编年史:从法拉第的意外发现到塑造现代文明的硅基浪潮
人工智能·深度学习·fpga开发·verilog·fpga·设计规范·嵌入式设计
z樾6 小时前
TorchRL-MADDPG
pytorch·python·深度学习