NLP 04(GRU)

一、GRU

GRU (Gated Recurrent Unit)也称门控循环单元结构,它也是传统RNN的变体,同LSTM一样能够有效捕捉长序列之间的语义关联缓解梯度消失或爆炸现象同时它的结构和计算要比LSTM更简单,它的核心结构可以分为两个部分去解析:

更新门、重置门

GRU的内部结构图和计算公式:

1.1 更新门&重置门

Bi-GRU与Bi-LSTM的逻辑相同,都是不改变其内部结构,而是将模型应用两次且方向不同,再将两次得到的LSTM结果进行拼接作为最终输出

二、GRU优缺点

  • 优点

GRU和LSTM作用相同,在捕捉长序列语义关联时,能有效抑制梯度消失或爆炸,效果都优于传统RNN且计算复杂度相比LSTM要小

  • 缺点

GRU仍然不能完全解决梯度消失问题,同时其作用RNN的变体,有着RNN结构本身的一大弊端,即不可并行计算,这在数据量和模型体量逐步增大的未来,是RNN发展的关键瓶颈。

相关推荐
YuforiaCode1 分钟前
黑马AI大模型神经网络与深度学习课程笔记(个人记录、仅供参考)
人工智能·笔记·深度学习
深度学习实战训练营11 分钟前
nnU-Net:基于unet的医学图像分割自适应框架,自动配置超参数与结构-k学长深度学习专栏
人工智能·深度学习
lybugproducer12 分钟前
深度学习专题:模型训练的张量并行(一)
人工智能·深度学习·transformer
油泼辣子多加19 分钟前
【信创】中间件对比
人工智能·深度学习·算法·中间件
拉姆哥的小屋21 分钟前
基于多模态深度学习的城市公园社交媒体评论智能分析系统——从BERTopic主题建模到CLIP图文一致性的全栈实践
人工智能·python·深度学习·矩阵·媒体
V1ncent Chen24 分钟前
深度学习进化的里程碑:Transformer模型
人工智能·深度学习·transformer
软件算法开发28 分钟前
基于鹈鹕优化的LSTM深度学习网络模型(POA-LSTM)的一维时间序列预测算法matlab仿真
深度学习·matlab·lstm·一维时间序列预测·鹈鹕优化·poa-lstm
智驱力人工智能34 分钟前
无人机车辆密度检测系统价格 询价准备 需要明确哪些参数 物流园区无人机车辆调度系统 无人机多模态车流密度检测技术
深度学习·算法·安全·yolo·无人机·边缘计算
代码洲学长41 分钟前
神经网络基础
人工智能·深度学习·神经网络
人工智能培训44 分钟前
DNN案例一步步构建深层神经网络
人工智能·深度学习·神经网络·大模型·dnn·具身智能