一、GRU
GRU (Gated Recurrent Unit)也称门控循环单元结构,它也是传统RNN的变体,同LSTM一样能够有效捕捉长序列之间的语义关联 ,缓解梯度消失或爆炸现象 ,同时它的结构和计算要比LSTM更简单,它的核心结构可以分为两个部分去解析:
更新门、重置门
GRU的内部结构图和计算公式:
1.1 更新门&重置门
Bi-GRU与Bi-LSTM的逻辑相同,都是不改变其内部结构,而是将模型应用两次且方向不同,再将两次得到的LSTM结果进行拼接作为最终输出
二、GRU优缺点
- 优点
GRU和LSTM作用相同,在捕捉长序列语义关联时,能有效抑制梯度消失或爆炸,效果都优于传统RNN且计算复杂度相比LSTM要小。
- 缺点
GRU仍然不能完全解决梯度消失问题,同时其作用RNN的变体,有着RNN结构本身的一大弊端,即不可并行计算,这在数据量和模型体量逐步增大的未来,是RNN发展的关键瓶颈。