目标检测算法改进系列之Backbone替换为RIFormer

RIFormer简介

Token Mixer是ViT骨干非常重要的组成成分,它用于对不同空域位置信息进行自适应聚合,但常规的自注意力往往存在高计算复杂度与高延迟问题。而直接移除Token Mixer又会导致不完备的结构先验,进而导致严重的性能下降。

原文地址:RIFormer: Keep Your Vision Backbone Effective But Removing Token Mixer

基于此,本文基于重参数机制提出了RepIdentityFormer方案以研究无Token Mixer的架构体系。紧接着,作者改进了学习架构以打破无Token Mixer架构的局限性并总结了5条指导方针。搭配上所提优化策略后,本文构建了一种极致简单且具有优异性能的视觉骨干,此外它还具有高推理效率优势。

实验结果表明:通过合适的优化策略,网络结构的归纳偏置可以被集成进简单架构体系中。本文为后续优化驱动的高效网络设计提供了新的起点和思路。

RIFormer代码实现

matlab 复制代码
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Sequence
import torch
import torch.nn as nn
import numpy as np
from mmcv.cnn.bricks import DropPath, build_activation_layer, build_norm_layer
from mmengine.model import BaseModule

__all__ = ['RIFormer']

class Mlp(nn.Module):
    """Mlp implemented by with 1*1 convolutions.

    Input: Tensor with shape [B, C, H, W].
    Output: Tensor with shape [B, C, H, W].
    Args:
        in_features (int): Dimension of input features.
        hidden_features (int): Dimension of hidden features.
        out_features (int): Dimension of output features.
        act_cfg (dict): The config dict for activation between pointwise
            convolution. Defaults to ``dict(type='GELU')``.
        drop (float): Dropout rate. Defaults to 0.0.
    """

    def __init__(self,
                 in_features,
                 hidden_features=None,
                 out_features=None,
                 act_cfg=dict(type='GELU'),
                 drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Conv2d(in_features, hidden_features, 1)
        self.act = build_activation_layer(act_cfg)
        self.fc2 = nn.Conv2d(hidden_features, out_features, 1)
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x

class PatchEmbed(nn.Module):
    """Patch Embedding module implemented by a layer of convolution.

    Input: tensor in shape [B, C, H, W]
    Output: tensor in shape [B, C, H/stride, W/stride]
    Args:
        patch_size (int): Patch size of the patch embedding. Defaults to 16.
        stride (int): Stride of the patch embedding. Defaults to 16.
        padding (int): Padding of the patch embedding. Defaults to 0.
        in_chans (int): Input channels. Defaults to 3.
        embed_dim (int): Output dimension of the patch embedding.
            Defaults to 768.
        norm_layer (module): Normalization module. Defaults to None (not use).
    """

    def __init__(self,
                 patch_size=16,
                 stride=16,
                 padding=0,
                 in_chans=3,
                 embed_dim=768,
                 norm_layer=None):
        super().__init__()
        self.proj = nn.Conv2d(
            in_chans,
            embed_dim,
            kernel_size=patch_size,
            stride=stride,
            padding=padding)
        self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()

    def forward(self, x):
        x = self.proj(x)
        x = self.norm(x)
        return x


class Affine(nn.Module):
    """Affine Transformation module.

    Args:
        in_features (int): Input dimension.
    """

    def __init__(self, in_features):
        super().__init__()
        self.affine = nn.Conv2d(
            in_features,
            in_features,
            kernel_size=1,
            stride=1,
            padding=0,
            groups=in_features,
            bias=True)

    def forward(self, x):
        return self.affine(x) - x


class RIFormerBlock(BaseModule):
    """RIFormer Block.

    Args:
        dim (int): Embedding dim.
        mlp_ratio (float): Mlp expansion ratio. Defaults to 4.
        norm_cfg (dict): The config dict for norm layers.
            Defaults to ``dict(type='GN', num_groups=1)``.
        act_cfg (dict): The config dict for activation between pointwise
            convolution. Defaults to ``dict(type='GELU')``.
        drop (float): Dropout rate. Defaults to 0.
        drop_path (float): Stochastic depth rate. Defaults to 0.
        layer_scale_init_value (float): Init value for Layer Scale.
            Defaults to 1e-5.
        deploy (bool): Whether to switch the model structure to
            deployment mode. Default: False.
    """

    def __init__(self,
                 dim,
                 mlp_ratio=4.,
                 norm_cfg=dict(type='GN', num_groups=1),
                 act_cfg=dict(type='GELU'),
                 drop=0.,
                 drop_path=0.,
                 layer_scale_init_value=1e-5,
                 deploy=False):

        super().__init__()

        if deploy:
            self.norm_reparam = build_norm_layer(norm_cfg, dim)[1]
        else:
            self.norm1 = build_norm_layer(norm_cfg, dim)[1]
            self.token_mixer = Affine(in_features=dim)
        self.norm2 = build_norm_layer(norm_cfg, dim)[1]
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(
            in_features=dim,
            hidden_features=mlp_hidden_dim,
            act_cfg=act_cfg,
            drop=drop)

        # The following two techniques are useful to train deep RIFormers.
        self.drop_path = DropPath(drop_path) if drop_path > 0. \
            else nn.Identity()
        self.layer_scale_1 = nn.Parameter(
            layer_scale_init_value * torch.ones((dim)), requires_grad=True)
        self.layer_scale_2 = nn.Parameter(
            layer_scale_init_value * torch.ones((dim)), requires_grad=True)
        self.norm_cfg = norm_cfg
        self.dim = dim
        self.deploy = deploy

    def forward(self, x):
        if hasattr(self, 'norm_reparam'):
            x = x + self.drop_path(
                self.layer_scale_1.unsqueeze(-1).unsqueeze(-1) *
                self.norm_reparam(x))
            x = x + self.drop_path(
                self.layer_scale_2.unsqueeze(-1).unsqueeze(-1) *
                self.mlp(self.norm2(x)))
        else:
            x = x + self.drop_path(
                self.layer_scale_1.unsqueeze(-1).unsqueeze(-1) *
                self.token_mixer(self.norm1(x)))
            x = x + self.drop_path(
                self.layer_scale_2.unsqueeze(-1).unsqueeze(-1) *
                self.mlp(self.norm2(x)))
        return x

    def fuse_affine(self, norm, token_mixer):
        gamma_affn = token_mixer.affine.weight.reshape(-1)
        gamma_affn = gamma_affn - torch.ones_like(gamma_affn)
        beta_affn = token_mixer.affine.bias
        gamma_ln = norm.weight
        beta_ln = norm.bias
        return (gamma_ln * gamma_affn), (beta_ln * gamma_affn + beta_affn)

    def get_equivalent_scale_bias(self):
        eq_s, eq_b = self.fuse_affine(self.norm1, self.token_mixer)
        return eq_s, eq_b

    def switch_to_deploy(self):
        if self.deploy:
            return
        eq_s, eq_b = self.get_equivalent_scale_bias()
        self.norm_reparam = build_norm_layer(self.norm_cfg, self.dim)[1]
        self.norm_reparam.weight.data = eq_s
        self.norm_reparam.bias.data = eq_b
        self.__delattr__('norm1')
        if hasattr(self, 'token_mixer'):
            self.__delattr__('token_mixer')
        self.deploy = True


def basic_blocks(dim,
                 index,
                 layers,
                 mlp_ratio=4.,
                 norm_cfg=dict(type='GN', num_groups=1),
                 act_cfg=dict(type='GELU'),
                 drop_rate=.0,
                 drop_path_rate=0.,
                 layer_scale_init_value=1e-5,
                 deploy=False):
    """generate RIFormer blocks for a stage."""
    blocks = []
    for block_idx in range(layers[index]):
        block_dpr = drop_path_rate * (block_idx + sum(layers[:index])) / (
            sum(layers) - 1)
        blocks.append(
            RIFormerBlock(
                dim,
                mlp_ratio=mlp_ratio,
                norm_cfg=norm_cfg,
                act_cfg=act_cfg,
                drop=drop_rate,
                drop_path=block_dpr,
                layer_scale_init_value=layer_scale_init_value,
                deploy=deploy,
            ))
    blocks = nn.Sequential(*blocks)

    return blocks

def update_weight(model_dict, weight_dict):
    idx, temp_dict = 0, {}
    for k, v in weight_dict.items():
        k = k[9:]
        if k in model_dict.keys() and np.shape(model_dict[k]) == np.shape(v):
            temp_dict[k] = v
            idx += 1
    model_dict.update(temp_dict)
    print(f'loading weights... {idx}/{len(model_dict)} items')
    return model_dict

class RIFormer(nn.Module):
    """RIFormer.

    A PyTorch implementation of RIFormer introduced by:
    `RIFormer: Keep Your Vision Backbone Effective But Removing Token Mixer <https://arxiv.org/abs/xxxx.xxxxx>`_

    Args:
        arch (str | dict): The model's architecture. If string, it should be
            one of architecture in ``RIFormer.arch_settings``. And if dict, it
            should include the following two keys:

            - layers (list[int]): Number of blocks at each stage.
            - embed_dims (list[int]): The number of channels at each stage.
            - mlp_ratios (list[int]): Expansion ratio of MLPs.
            - layer_scale_init_value (float): Init value for Layer Scale.

            Defaults to 'S12'.

        norm_cfg (dict): The config dict for norm layers.
            Defaults to ``dict(type='LN2d', eps=1e-6)``.
        act_cfg (dict): The config dict for activation between pointwise
            convolution. Defaults to ``dict(type='GELU')``.
        in_patch_size (int): The patch size of/? input image patch embedding.
            Defaults to 7.
        in_stride (int): The stride of input image patch embedding.
            Defaults to 4.
        in_pad (int): The padding of input image patch embedding.
            Defaults to 2.
        down_patch_size (int): The patch size of downsampling patch embedding.
            Defaults to 3.
        down_stride (int): The stride of downsampling patch embedding.
            Defaults to 2.
        down_pad (int): The padding of downsampling patch embedding.
            Defaults to 1.
        drop_rate (float): Dropout rate. Defaults to 0.
        drop_path_rate (float): Stochastic depth rate. Defaults to 0.
        out_indices (Sequence | int): Output from which network position.
            Index 0-6 respectively corresponds to
            [stage1, downsampling, stage2, downsampling, stage3, downsampling, stage4]
            Defaults to -1, means the last stage.
        frozen_stages (int): Stages to be frozen (all param fixed).
            Defaults to -1, which means not freezing any parameters.
        deploy (bool): Whether to switch the model structure to
            deployment mode. Default: False.
        init_cfg (dict, optional): Initialization config dict
    """  # noqa: E501

    # --layers: [x,x,x,x], numbers of layers for the four stages
    # --embed_dims, --mlp_ratios:
    #     embedding dims and mlp ratios for the four stages
    # --downsamples: flags to apply downsampling or not in four blocks
    arch_settings = {
        's12': {
            'layers': [2, 2, 6, 2],
            'embed_dims': [64, 128, 320, 512],
            'mlp_ratios': [4, 4, 4, 4],
            'layer_scale_init_value': 1e-5,
        },
        's24': {
            'layers': [4, 4, 12, 4],
            'embed_dims': [64, 128, 320, 512],
            'mlp_ratios': [4, 4, 4, 4],
            'layer_scale_init_value': 1e-5,
        },
        's36': {
            'layers': [6, 6, 18, 6],
            'embed_dims': [64, 128, 320, 512],
            'mlp_ratios': [4, 4, 4, 4],
            'layer_scale_init_value': 1e-6,
        },
        'm36': {
            'layers': [6, 6, 18, 6],
            'embed_dims': [96, 192, 384, 768],
            'mlp_ratios': [4, 4, 4, 4],
            'layer_scale_init_value': 1e-6,
        },
        'm48': {
            'layers': [8, 8, 24, 8],
            'embed_dims': [96, 192, 384, 768],
            'mlp_ratios': [4, 4, 4, 4],
            'layer_scale_init_value': 1e-6,
        },
    }

    def __init__(self,
                 arch='s12',
                 weights = '',
                 in_channels=3,
                 norm_cfg=dict(type='GN', num_groups=1),
                 act_cfg=dict(type='GELU'),
                 in_patch_size=7,
                 in_stride=4,
                 in_pad=2,
                 down_patch_size=3,
                 down_stride=2,
                 down_pad=1,
                 drop_rate=0.,
                 drop_path_rate=0.,
                 out_indices=[0, 2, 4, 6],
                 deploy=False):

        super().__init__()

        if isinstance(arch, str):
            assert arch in self.arch_settings, \
                f'Unavailable arch, please choose from ' \
                f'({set(self.arch_settings)}) or pass a dict.'
            arch = self.arch_settings[arch]
        elif isinstance(arch, dict):
            assert 'layers' in arch and 'embed_dims' in arch, \
                f'The arch dict must have "layers" and "embed_dims", ' \
                f'but got {list(arch.keys())}.'

        layers = arch['layers']
        embed_dims = arch['embed_dims']
        mlp_ratios = arch['mlp_ratios'] \
            if 'mlp_ratios' in arch else [4, 4, 4, 4]
        layer_scale_init_value = arch['layer_scale_init_value'] \
            if 'layer_scale_init_value' in arch else 1e-5

        self.patch_embed = PatchEmbed(
            patch_size=in_patch_size,
            stride=in_stride,
            padding=in_pad,
            in_chans=in_channels,
            embed_dim=embed_dims[0])

        # set the main block in network
        network = []
        for i in range(len(layers)):
            stage = basic_blocks(
                embed_dims[i],
                i,
                layers,
                mlp_ratio=mlp_ratios[i],
                norm_cfg=norm_cfg,
                act_cfg=act_cfg,
                drop_rate=drop_rate,
                drop_path_rate=drop_path_rate,
                layer_scale_init_value=layer_scale_init_value,
                deploy=deploy)
            network.append(stage)
            if i >= len(layers) - 1:
                break
            if embed_dims[i] != embed_dims[i + 1]:
                # downsampling between two stages
                network.append(
                    PatchEmbed(
                        patch_size=down_patch_size,
                        stride=down_stride,
                        padding=down_pad,
                        in_chans=embed_dims[i],
                        embed_dim=embed_dims[i + 1]))

        self.network = nn.ModuleList(network)

        if isinstance(out_indices, int):
            out_indices = [out_indices]
        assert isinstance(out_indices, Sequence), \
            f'"out_indices" must by a sequence or int, ' \
            f'get {type(out_indices)} instead.'
        for i, index in enumerate(out_indices):
            if index < 0:
                out_indices[i] = 7 + index
                assert out_indices[i] >= 0, f'Invalid out_indices {index}'
        self.out_indices = out_indices
        if self.out_indices:
            for i_layer in self.out_indices:
                layer = build_norm_layer(norm_cfg,
                                         embed_dims[(i_layer + 1) // 2])[1]
                layer_name = f'norm{i_layer}'
                self.add_module(layer_name, layer)

        self.deploy = deploy
        if weights:
            self.load_state_dict(update_weight(self.state_dict(), torch.load(weights)['state_dict']))
        self.channel = [i.size(1) for i in self.forward(torch.randn(1, 3, 640, 640))]

    def forward_embeddings(self, x):
        x = self.patch_embed(x)
        return x

    def forward_tokens(self, x):
        outs = []
        for idx, block in enumerate(self.network):
            x = block(x)
            if idx in self.out_indices:
                norm_layer = getattr(self, f'norm{idx}')
                x_out = norm_layer(x)
                outs.append(x_out)
        return outs
    
    def forward(self, x):
        # input embedding
        x = self.forward_embeddings(x)
        # through backbone
        x = self.forward_tokens(x)
        return x

if __name__ == '__main__':
    model = RIFormer('s12', 'riformer-s12_32xb128_in1k-384px_20230406-145eda4c.pth')
    inputs = torch.randn((1, 3, 640, 640))
    for i in model(inputs):
        print(i.size())

Backbone替换

yolo.py修改

def parse_model函数

matlab 复制代码
def parse_model(d, ch):  # model_dict, input_channels(3)
    # Parse a YOLOv5 model.yaml dictionary
    LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10}  {'module':<40}{'arguments':<30}")
    anchors, nc, gd, gw, act = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple'], d.get('activation')
    if act:
        Conv.default_act = eval(act)  # redefine default activation, i.e. Conv.default_act = nn.SiLU()
        LOGGER.info(f"{colorstr('activation:')} {act}")  # print
    na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors  # number of anchors
    no = na * (nc + 5)  # number of outputs = anchors * (classes + 5)

    is_backbone = False
    layers, save, c2 = [], [], ch[-1]  # layers, savelist, ch out
    for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']):  # from, number, module, args
        try:
            t = m
            m = eval(m) if isinstance(m, str) else m  # eval strings
        except:
            pass
        for j, a in enumerate(args):
            with contextlib.suppress(NameError):
                try:
                    args[j] = eval(a) if isinstance(a, str) else a  # eval strings
                except:
                    args[j] = a

        n = n_ = max(round(n * gd), 1) if n > 1 else n  # depth gain
        if m in {
                Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv,
                BottleneckCSP, C3, C3TR, C3SPP, C3Ghost, nn.ConvTranspose2d, DWConvTranspose2d, C3x}:
            c1, c2 = ch[f], args[0]
            if c2 != no:  # if not output
                c2 = make_divisible(c2 * gw, 8)

            args = [c1, c2, *args[1:]]
            if m in {BottleneckCSP, C3, C3TR, C3Ghost, C3x}:
                args.insert(2, n)  # number of repeats
                n = 1
        elif m is nn.BatchNorm2d:
            args = [ch[f]]
        elif m is Concat:
            c2 = sum(ch[x] for x in f)
        # TODO: channel, gw, gd
        elif m in {Detect, Segment}:
            args.append([ch[x] for x in f])
            if isinstance(args[1], int):  # number of anchors
                args[1] = [list(range(args[1] * 2))] * len(f)
            if m is Segment:
                args[3] = make_divisible(args[3] * gw, 8)
        elif m is Contract:
            c2 = ch[f] * args[0] ** 2
        elif m is Expand:
            c2 = ch[f] // args[0] ** 2
        elif isinstance(m, str):
            t = m
            m = timm.create_model(m, pretrained=args[0], features_only=True)
            c2 = m.feature_info.channels()
        elif m in {RIFormer}: #添加Backbone
            m = m(*args)
            c2 = m.channel
        else:
            c2 = ch[f]
        if isinstance(c2, list):
            is_backbone = True
            m_ = m
            m_.backbone = True
        else:
            m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args)  # module
            t = str(m)[8:-2].replace('__main__.', '')  # module type
        np = sum(x.numel() for x in m_.parameters())  # number params
        m_.i, m_.f, m_.type, m_.np = i + 4 if is_backbone else i, f, t, np  # attach index, 'from' index, type, number params
        LOGGER.info(f'{i:>3}{str(f):>18}{n_:>3}{np:10.0f}  {t:<40}{str(args):<30}')  # print
        save.extend(x % (i + 4 if is_backbone else i) for x in ([f] if isinstance(f, int) else f) if x != -1)  # append to savelist
        layers.append(m_)
        if i == 0:
            ch = []
        if isinstance(c2, list):
            ch.extend(c2)
            for _ in range(5 - len(ch)):
                ch.insert(0, 0)
        else:
            ch.append(c2)
    return nn.Sequential(*layers), sorted(save)

def _forward_once函数

matlab 复制代码
def _forward_once(self, x, profile=False, visualize=False):
    y, dt = [], []  # outputs
    for m in self.model:
        if m.f != -1:  # if not from previous layer
            x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]  # from earlier layers
        if profile:
            self._profile_one_layer(m, x, dt)
        if hasattr(m, 'backbone'):
            x = m(x)
            for _ in range(5 - len(x)):
                x.insert(0, None)
            for i_idx, i in enumerate(x):
                if i_idx in self.save:
                    y.append(i)
                else:
                    y.append(None)
            x = x[-1]
        else:
            x = m(x)  # run
            y.append(x if m.i in self.save else None)  # save output
        if visualize:
            feature_visualization(x, m.type, m.i, save_dir=visualize)
    return x

创建.yaml配置文件

matlab 复制代码
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
# Parameters
nc: 80  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.25  # layer channel multiple
anchors:
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32

# 0-P1/2
# 1-P2/4
# 2-P3/8
# 3-P4/16
# 4-P5/32

# YOLOv5 v6.0 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, RIFormer, [False]], # 4
   [-1, 1, SPPF, [1024, 5]],  # 5
  ]

# YOLOv5 v6.0 head
head:
  [[-1, 1, Conv, [512, 1, 1]], # 6
   [-1, 1, nn.Upsample, [None, 2, 'nearest']], # 7
   [[-1, 3], 1, Concat, [1]],  # cat backbone P4 8
   [-1, 3, C3, [512, False]],  # 9

   [-1, 1, Conv, [256, 1, 1]], # 10
   [-1, 1, nn.Upsample, [None, 2, 'nearest']], # 11
   [[-1, 2], 1, Concat, [1]],  # cat backbone P3 12
   [-1, 3, C3, [256, False]],  # 13 (P3/8-small)

   [-1, 1, Conv, [256, 3, 2]], # 14
   [[-1, 10], 1, Concat, [1]],  # cat head P4 15
   [-1, 3, C3, [512, False]],  # 16 (P4/16-medium)

   [-1, 1, Conv, [512, 3, 2]], # 17
   [[-1, 5], 1, Concat, [1]],  # cat head P5 18
   [-1, 3, C3, [1024, False]],  # 19 (P5/32-large)

   [[13, 16, 19], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
  ]
相关推荐
td爆米花7 分钟前
C#冒泡排序
数据结构·算法·排序算法
volcanical16 分钟前
Judging LLM-as-a-Judge with MT-Bench and Chatbot Arena
人工智能·自然语言处理·机器翻译
大知闲闲哟18 分钟前
深度学习J6周 ResNeXt-50实战解析
人工智能·深度学习
chenziang126 分钟前
leetcode hot100
算法·leetcode·职场和发展
执着的小火车35 分钟前
02-18.python入门基础一基础算法
数据结构·python·算法·排序算法
梦茹^_^36 分钟前
排序算法(系列)
数据结构·python·算法·排序算法·希尔排序·基数排序·计数排序和桶排序
花开盛夏^.^41 分钟前
Timsort算法
数据结构·算法·排序算法
code monkey.43 分钟前
【排序算法】—— 计数排序
c++·算法·排序算法
云青山水林1 小时前
2024.12.21 周六
c++·算法·贪心算法