机器学习-Pytorch基础

  1. Numpy和Pytorch可以相互转换,前者CPU上,后者GPU上,都是对矩阵进行运算,Pytorch的基本单位是张量。
  2. torch 可以初始化全为0、全为1、符合正态分布的矩阵
  3. 确定性初始化
  • torch.tensor()
  • torch.arrange()
  • torch.linspace()
  • torch.logspace()
  • ones/zeros/eye/full
  1. 随机性初始化
  • torch.Tensor()
  • torch.rand()
  • torch.rand_like()
  • torch.randint()
  • torch.randn()
  1. 直接点×关闭jupyter不正确,应该再启动一个命令行,进入打开jupyter的环境,打jupyter notebook stop
  2. torch可以和python列表一样切片
  3. 神经网络输入一维,图片是三维,所以需要维度变换,view()和reshape()都可以维度变换,后者鲁棒性更强。reshape可以多层嵌套,前者不行。化成一维可以偷懒,用-1。
  4. 增加新的维度:unsqueeze(),增加一个括号
  5. 维度缩减:squeeze()维度值为1才能删,因为维度值大于1删除会丢数据,减少个括号。
  6. 维度扩展:expand(),repeat()
  7. 维度调整:transpose(),permute()前者只能调两个维度,后者可以调整多个维度。某个算法可能只能用最后一个维度,所以需要进行维度的调整,如transformer()
  8. 广播机制:相当于先进行了unsqueeze再进行expand。小维度向大维度进行广播时,得先匹配,得先小维度和大维度相同或者小维度为1才能进行广播。
  9. 根据文档进行编程的思想!不用背API,知道这个函数的功能是什么,用到的时候去查文档。
  10. 数学能力是科研能力的上限,如果是工作的话数学要求没那么高。
  11. 张量的拼接 cat()和stack(),前者只能是需要拼接的维度不同,其他得相同;后者所有维度都必须相同。
  12. 张量的拆分split()和chunk(),前者是按间隔拆分,后者是按数量拆分
  13. 取整floor(),ceil(),round()
  14. 裁数trunc(),frac()
  15. 计算mean,max,sum,prod,min
  16. a.argmax(),a.argmin()最大值索引和最小值索引
  17. eq(),equal()前者更精细,每个位置比对,后者是整体比对。

博客1
博客2
博客3

文档1

相关推荐
Aileen_0v03 分钟前
【AI驱动的数据结构:包装类的艺术与科学】
linux·数据结构·人工智能·笔记·网络协议·tcp/ip·whisper
数信云 DCloud4 分钟前
实力认可 | 通付盾入选《ISC.AI 2024创新能力全景图谱》五项领域
人工智能
itwangyang5205 分钟前
AIDD - 从机器学习到深度学习:蛋白质-配体对接评分函数的进展
人工智能·深度学习·机器学习
jerry2011086 分钟前
机器学习常用术语
人工智能·机器学习
电报号dapp1198 分钟前
比特币市场震荡:回调背后的机遇与挑战
人工智能·去中心化·区块链·智能合约
AI_NEW_COME18 分钟前
构建全方位大健康零售帮助中心:提升服务与体验
大数据·人工智能
IT古董24 分钟前
【机器学习】机器学习的基本分类-强化学习-Actor-Critic 方法
人工智能·机器学习·分类
martian66524 分钟前
【人工智能数学基础】——深入详解贝叶斯理论:掌握贝叶斯定理及其在分类和预测中的应用
人工智能·数学·分类·数据挖掘·贝叶斯
mingo_敏25 分钟前
深度学习中的并行策略概述:2 Data Parallelism
人工智能·深度学习
終不似少年遊*1 小时前
美国加州房价数据分析01
人工智能·python·机器学习·数据挖掘·数据分析·回归算法