卷积网络的发展历史-LeNet

简介

LeNet是CNN结构的开山鼻祖,第一次定义了卷积神经网络的结构。

LeNet模型包含了多个卷积层和池化层,以及最后的全连接层用于分类。其中,每个卷积层都包含了一个卷积操作和一个非线性激活函数,用于提取输入图像的特征。池化层则用于缩小特征图的尺寸,减少模型参数和计算量。全连接层则将特征向量映射到类别概率上。

特点

LeNet 的特点如下所示:

(1)定义了卷积神经网络(Convolutional Neural Network, CNN)的基本框架:卷积层+池化层(Pooling Layer)+全连接层;

(2)定义了卷积层(Convolution Layer),与全连接层相比,卷积层的不同之处有两点:局部连接(引进"感受野"这一概念)、权值共享(减少参数数量),卷积计算公式:

(3)利用池化层进行下采样(Downsampooling),从而减少计算量,池化计算公式:

(4)用tanh作为非线性激活函数(现在看到的都是改进过的LeNet了,用ReLu代替 tanh。相较于sigmoid,tanh以原点对称(zero-centered),收敛速度会快。

python实例

python 复制代码
import tensorflow as tf

def lenet_model():
    inputs = tf.placeholder(tf.float32, shape=[None, 28, 28, 1])
    conv1 = tf.layers.conv2d(inputs=inputs, filters=6, kernel_size=(5, 5), strides=(1, 1), padding='valid', activation=tf.nn.relu)
    pool1 = tf.layers.max_pooling2d(conv1, (2, 2), strides=(2, 2))
    conv2 = tf.layers.conv2d(inputs=pool1, filters=16, kernel_size=(5, 5), strides=(1, 1), padding='valid', activation=tf.nn.relu)
    pool2 = tf.layers.max_pooling2d(conv2, (2, 2), strides=(2, 2))
    flatten = tf.layers.flatten(pool2)
    dense1 = tf.layers.dense(flatten, 120, activation=tf.nn.relu)
    dense2 = tf.layers.dense(dense1, 84, activation=tf.nn.relu)
    logits = tf.layers.dense(dense2, 10)
    return inputs, logits
相关推荐
じ☆冷颜〃4 小时前
黎曼几何驱动的算法与系统设计:理论、实践与跨领域应用
笔记·python·深度学习·网络协议·算法·机器学习
风送雨4 小时前
FastMCP 2.0 服务端开发教学文档(下)
服务器·前端·网络·人工智能·python·ai
HyperAI超神经5 小时前
【vLLM 学习】Rlhf
人工智能·深度学习·学习·机器学习·vllm
芯盾时代5 小时前
石油化工行业网络风险解决方案
网络·人工智能·信息安全
线束线缆组件品替网5 小时前
Weidmüller 工业以太网线缆技术与兼容策略解析
网络·人工智能·电脑·硬件工程·材料工程
lambo mercy5 小时前
深度学习3:新冠病毒感染人数预测
人工智能·深度学习
Echo_NGC22375 小时前
【神经视频编解码NVC】传统神经视频编解码完全指南:从零读懂 AI 视频压缩的基石
人工智能·深度学习·算法·机器学习·视频编解码
哥布林学者6 小时前
吴恩达深度学习课程五:自然语言处理 第一周:循环神经网络 (四)RNN 中的梯度现象
深度学习·ai
以太浮标6 小时前
华为eNSP模拟器综合实验之-BFD联动配置解析
运维·网络·华为·信息与通信
雍凉明月夜6 小时前
深度学习网络笔记Ⅳ(Transformer + VIT)
笔记·深度学习·transformer