卷积网络的发展历史-LeNet

简介

LeNet是CNN结构的开山鼻祖,第一次定义了卷积神经网络的结构。

LeNet模型包含了多个卷积层和池化层,以及最后的全连接层用于分类。其中,每个卷积层都包含了一个卷积操作和一个非线性激活函数,用于提取输入图像的特征。池化层则用于缩小特征图的尺寸,减少模型参数和计算量。全连接层则将特征向量映射到类别概率上。

特点

LeNet 的特点如下所示:

(1)定义了卷积神经网络(Convolutional Neural Network, CNN)的基本框架:卷积层+池化层(Pooling Layer)+全连接层;

(2)定义了卷积层(Convolution Layer),与全连接层相比,卷积层的不同之处有两点:局部连接(引进"感受野"这一概念)、权值共享(减少参数数量),卷积计算公式:

(3)利用池化层进行下采样(Downsampooling),从而减少计算量,池化计算公式:

(4)用tanh作为非线性激活函数(现在看到的都是改进过的LeNet了,用ReLu代替 tanh。相较于sigmoid,tanh以原点对称(zero-centered),收敛速度会快。

python实例

python 复制代码
import tensorflow as tf

def lenet_model():
    inputs = tf.placeholder(tf.float32, shape=[None, 28, 28, 1])
    conv1 = tf.layers.conv2d(inputs=inputs, filters=6, kernel_size=(5, 5), strides=(1, 1), padding='valid', activation=tf.nn.relu)
    pool1 = tf.layers.max_pooling2d(conv1, (2, 2), strides=(2, 2))
    conv2 = tf.layers.conv2d(inputs=pool1, filters=16, kernel_size=(5, 5), strides=(1, 1), padding='valid', activation=tf.nn.relu)
    pool2 = tf.layers.max_pooling2d(conv2, (2, 2), strides=(2, 2))
    flatten = tf.layers.flatten(pool2)
    dense1 = tf.layers.dense(flatten, 120, activation=tf.nn.relu)
    dense2 = tf.layers.dense(dense1, 84, activation=tf.nn.relu)
    logits = tf.layers.dense(dense2, 10)
    return inputs, logits
相关推荐
东临碣石8220 分钟前
【重磅AI论文】DeepSeek-R1:通过强化学习激励大语言模型(LLMs)的推理能力
人工智能·深度学习·语言模型
点云SLAM1 小时前
CVPR 2024 人脸方向总汇(人脸识别、头像重建、人脸合成和3D头像等)
深度学习·计算机视觉·人脸识别·3d人脸·头像重建
小徐同学14182 小时前
BGP边界网关协议(Border Gateway Protocol)路由聚合详解
运维·服务器·网络·网络协议·信息与通信·bgp
ZzYH222 小时前
文献阅读 250125-Accurate predictions on small data with a tabular foundation model
人工智能·笔记·深度学习·机器学习
阿常112 小时前
计算机网络——OSI和TCP/IP模型
网络·tcp/ip·计算机网络
FL16238631292 小时前
汽车表面划痕刮伤检测数据集VOC+YOLO格式1221张1类别
深度学习·yolo·汽车
费3 小时前
1、云计算
网络·云计算
种花生的图图4 小时前
《边界感知的分而治之方法:基于扩散模型的无监督阴影去除解决方案》学习笔记
人工智能·笔记·深度学习·学习·机器学习
谁在夜里看海.4 小时前
【Linux-网络】初识计算机网络 & Socket套接字 & TCP/UDP协议(包含Socket编程实战)
linux·运维·服务器·网络·计算机网络
马浩同学6 小时前
【ESP32】ESP-IDF开发 | WiFi开发 | TCP传输控制协议 + TCP服务器和客户端例程
c语言·网络·单片机·mcu·tcp/ip