【文末送书】Python数据分析

欢迎关注博主 Mindtechnist 或加入【智能科技社区】一起学习和分享Linux、C、C++、Python、Matlab,机器人运动控制、多机器人协作,智能优化算法,滤波估计、多传感器信息融合,机器学习,人工智能等相关领域的知识和技术。关注公粽号 《机器和智能》 回复关键词 "python项目实战" 即可获取美哆商城视频资源!


博主介绍:

CSDN优质创作者,CSDN实力新星,CSDN内容合伙人;

阿里云社区专家博主;

华为云社区云享专家;

51CTO社区入驻博主,掘金社区入驻博主,支付宝社区入驻博主,博客园博主。


Python数据分析


专栏:《前沿技术文献与图书推荐》


当谈到数据分析时,Python通常是最受欢迎的编程语言之一。Python提供了丰富的数据分析工具和库,使数据科学家能够处理、可视化和理解数据。本博客将详细介绍Python数据分析的基本概念、工具和示例,帮助您入门数据分析领域。

什么是数据分析

数据分析是一种处理、转换和解释数据的过程,旨在从数据中提取有价值的信息。数据分析通常涵盖以下几个方面:

  • 数据收集:获取数据源,可以是数据库、文件、API等。
  • 数据清洗:处理缺失数据、异常值和重复数据。
  • 探索性数据分析(EDA):通过统计和可视化方法探索数据的特征和分布。
  • 数据建模:构建数学模型来解决问题,例如回归分析、分类和聚类。
  • 数据可视化:使用图表和图形来传达数据的见解。
  • 结果解释和报告:将分析结果解释给利益相关者。

Python在这些方面提供了强大的工具和库,使数据分析变得更容易。

Python数据分析工具

NumPy

NumPy是Python的数值计算库,提供了多维数组对象和用于处理这些数组的数学函数。NumPy是数据分析的基础,允许您执行各种数学和统计操作。

python 复制代码
import numpy as np

# 创建一个NumPy数组
data = np.array([1, 2, 3, 4, 5])

# 计算均值和标准差
mean = np.mean(data)
std_dev = np.std(data)

Pandas

Pandas是一个数据分析库,提供了高性能的数据结构(DataFrame和Series)和数据操作工具。它使数据的导入、清洗、转换和分析变得非常简单。

python 复制代码
import pandas as pd

# 创建一个DataFrame
data = {'Name': ['Alice', 'Bob', 'Charlie'],
        'Age': [25, 30, 35]}
df = pd.DataFrame(data)

# 查看数据摘要
summary = df.describe()

Matplotlib和Seaborn

Matplotlib和Seaborn是用于数据可视化的库,允许您创建各种类型的图表和图形,以更好地理解数据。

python 复制代码
import matplotlib.pyplot as plt
import seaborn as sns

# 创建一个散点图
plt.scatter(df['Age'], df['Income'])
plt.xlabel('Age')
plt.ylabel('Income')
plt.title('Scatter Plot of Age vs. Income')
plt.show()

Scikit-Learn

Scikit-Learn是一个用于机器学习和数据挖掘的库,提供了各种算法和工具,用于回归、分类、聚类等任务。

python 复制代码
from sklearn.linear_model import LinearRegression

# 创建线性回归模型
model = LinearRegression()

# 拟合模型
model.fit(X, y)

# 预测
predictions = model.predict(X_test)

数据分析示例

下面,我们将使用Python进行一个简单的数据分析示例:分析餐厅销售数据。

步骤1:导入数据

首先,我们需要导入销售数据。假设我们有一个名为sales.csv的CSV文件,包含销售日期、销售额和产品类别等信息。

python 复制代码
import pandas as pd

# 导入数据
data = pd.read_csv('sales.csv')

步骤2:探索性数据分析(EDA)

让我们进行一些基本的数据探索,看看数据的特征和分布。

python 复制代码
# 查看前5行数据
print(data.head())

# 统计摘要
summary = data.describe()
print(summary)

# 绘制销售额的直方图
import matplotlib.pyplot as plt
plt.hist(data['Sales'], bins=20)
plt.xlabel('Sales')
plt.ylabel('Frequency')
plt.title('Histogram of Sales')
plt.show()

步骤3:数据可视化

现在,让我们使用Seaborn创建一个销售额与产品类别的箱线图。

python 复制代码
import seaborn as sns
sns.boxplot(x='Category', y='Sales', data=data)
plt.xlabel('Category')
plt.ylabel('Sales')
plt.title('Boxplot of Sales by Category')
plt.show()

步骤4:建立模型

我们可以使用线性回归模型来预测销售额与其他变量之间的关系。

python 复制代码
from sklearn.linear_model import LinearRegression

# 创建线性回归模型
model = LinearRegression()

# 定义自变量和因变量
X = data[['Category', 'Date']]
y = data['Sales']

# 拟合模型
model.fit(X, y)

图书推荐 - 《Python数据分析从入门到精通》

🔥 《Python数据分析从入门到精通》

近年来,机器学习方法凭借其理解海量数据和自主决策的能力,已在医疗保健、 机器人、生物学、物理学、大众消费和互联网服务等行业得到了广泛的应用。自从AlexNet模型在2012年ImageNet大赛被提出以来,机器学习和深度学习迅猛发展,取得了一个又一个里程碑式的成就,深刻地影响了工业界、学术界和人们的生活。

如今,机器学习、深度学习、人工智能已经成为信息领域最热门的研究方向,在就业市场这些领域的工作也非常吸引人。科学的巨大飞跃通常来自精彩的想法和易用的工具,机器学习也不例外。

在实践中应用机器学习需要理论和工具的结合。对于机器学习的入门读者而言, 从理解原理概念到确定要安装的软件包都有一定的难度。许多在最开始尝试机器学习的时候,会发现理解一个算法在干什么真的非常难。不仅仅是因为算法里各种繁杂的数学理论和难懂的符号,没有实际的例子,光靠定义和推导来了解一个算法实在是很无聊。就连网络上的相关的指导材料,能找到的通常都是各种公式以及晦涩难懂的解释,很少有人能够细致的将所有细节加以说明。
书名:《Python数据分析从入门到精通》

出版社:清华大学出版社

京东购买:点击直达

当当购买:点击直达
内容简介:《Python数据分析从入门到精通》全面介绍了使用Python进行数据分析所必需的各项知识。全书共分为14章,包括了解数据分析、搭建Python数据分析环境、Pandas统计分析、Matplotlib可视化数据分析图表、Seaborn可视化数据分析图表、第三方可视化数据分析图表Pyecharts、图解数组计算模块NumPy、数据统计分析案例、机器学习库Scikit-Learn、注册用户分析(MySQL版)、电商销售数据分析与预测、二手房房价分析与预测,以及客户价值分析。

该书所有示例、案例和实战项目都提供源码,另外该书的服务网站提供了模块库、案例库、题库、素材库、答疑服务,力求为读者打造一本"基础入门+应用开发+项目实战"一体化的Python数据分析图书。

《Python数据分析从入门到精通》内容详尽,图文丰富,非常适合作为数据分析人员的学习参考用书,也可作为想拓展数据分析技能的普通职场人员和Python开发人员学习参考用书。


🎉本次送2套书 ,评论区抽2位小伙伴送书

🎉活动时间:截止到 2023-10-14 10:00:00

🎉抽奖方式:评论区随机抽奖。

🎉参与方式:关注博主、点赞、收藏,评论。

❗注意:一定要关注博主,不然中奖后将无效!

🎉通知方式:通过私信联系中奖粉丝并在评论区置顶公布。

💡提示:有任何疑问请私信公粽号 《机器和智能》



❗❗❗重要❗❗❗☞关注下方公粽号 《机器和智能》 回复关键词 "python项目实战" 即可获取美哆商城视频资源!

相关推荐
IT_陈寒2 小时前
React 18实战:7个被低估的Hooks技巧让你的开发效率提升50%
前端·人工智能·后端
数据智能老司机3 小时前
精通 Python 设计模式——分布式系统模式
python·设计模式·架构
逛逛GitHub3 小时前
飞书多维表“独立”了!功能强大的超出想象。
人工智能·github·产品
机器之心4 小时前
刚刚,DeepSeek-R1论文登上Nature封面,通讯作者梁文锋
人工智能·openai
数据智能老司机4 小时前
精通 Python 设计模式——并发与异步模式
python·设计模式·编程语言
数据智能老司机4 小时前
精通 Python 设计模式——测试模式
python·设计模式·架构
数据智能老司机4 小时前
精通 Python 设计模式——性能模式
python·设计模式·架构
c8i5 小时前
drf初步梳理
python·django
每日AI新事件5 小时前
python的异步函数
python
这里有鱼汤6 小时前
miniQMT下载历史行情数据太慢怎么办?一招提速10倍!
前端·python