基于卷积神经网络的图像识别-案例实施1

案例描述

学习如何搭建CNN卷积神经网络,训练cifar-10数据,识别图片中的内容。

案例分析

cifar-10是由Hinton的学生Alex Krizhevsky和Ilya Sutskever整理的一个用于识别普适物体的小型数据集。一共包含 10个类别的 RGB 彩色图 片:飞机( airplane )、汽车( automobile )、鸟类( bird )、猫( cat )、鹿( deer )、狗( dog )、蛙类( frog )、马( horse )、船( ship )和卡车( truck )。图片由32×32彩色图像组成,每个类有6000个图像。cifar-10数据集中共有50000个训练图像和10000个测试图像。

案例实施

**1.**加载数据

from tensorflow.keras import datasets, layers, models

(train_images, train_labels), (test_images, test_labels) = datasets.cifar10.load_data()

**2.**搭建卷积神经网络

Keras是一个由Python编写的开源人工神经网络库,可以作为Tensorflow、Microsoft-CNTK和Theano的高阶应用程序接口,进行深度学习模型的设计、调试、评估、应用和可视化。Keras同样提供了序列化方法,可以方便的帮助搭建神经网络。

model = models.Sequential()

model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)))

model.add(layers.MaxPooling2D((2, 2)))

model.add(layers.Flatten())

model.add(layers.Dense(64, activation='relu'))

model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])

**3.**可视化训练过程

为了方便查看训练过程中准确率的变化,可以借助matplotlib来可视化训练过程。

相关推荐
北京耐用通信5 小时前
耐达讯自动化PROFIBUS三路中继器:突破工业通信距离与干扰限制的利器
人工智能·物联网·自动化·信息与通信
德迅云安全—珍珍11 小时前
2026 年网络安全预测:AI 全面融入实战的 100+行业洞察
人工智能·安全·web安全
数新网络13 小时前
CyberScheduler —— 打破数据调度边界的核心引擎
人工智能
Codebee13 小时前
Ooder框架8步编码流程实战 - DSM组件UI统计模块深度解析
人工智能
Deepoch13 小时前
智能升级新范式:Deepoc开发板如何重塑康复辅具产业生态
人工智能·具身模型·deepoc·智能轮椅
赋创小助手13 小时前
融合与跃迁:NVIDIA、Groq 与下一代 AI 推理架构的博弈与机遇
服务器·人工智能·深度学习·神经网络·语言模型·自然语言处理·架构
静听松涛13313 小时前
多智能体协作中的通信协议演化
人工智能
基咯咯13 小时前
Google Health AI发布MedASR:Conformer 医疗语音识别如何服务临床口述与对话转写
人工智能
白日做梦Q14 小时前
深度学习模型评估指标深度解析:不止于准确率的科研量化方法
人工智能·深度学习
Yyyyy123jsjs14 小时前
外汇Tick数据交易时段详解与Python实战分析
人工智能·python·区块链