基于卷积神经网络的图像识别-案例实施1

案例描述

学习如何搭建CNN卷积神经网络,训练cifar-10数据,识别图片中的内容。

案例分析

cifar-10是由Hinton的学生Alex Krizhevsky和Ilya Sutskever整理的一个用于识别普适物体的小型数据集。一共包含 10个类别的 RGB 彩色图 片:飞机( airplane )、汽车( automobile )、鸟类( bird )、猫( cat )、鹿( deer )、狗( dog )、蛙类( frog )、马( horse )、船( ship )和卡车( truck )。图片由32×32彩色图像组成,每个类有6000个图像。cifar-10数据集中共有50000个训练图像和10000个测试图像。

案例实施

**1.**加载数据

from tensorflow.keras import datasets, layers, models

(train_images, train_labels), (test_images, test_labels) = datasets.cifar10.load_data()

**2.**搭建卷积神经网络

Keras是一个由Python编写的开源人工神经网络库,可以作为Tensorflow、Microsoft-CNTK和Theano的高阶应用程序接口,进行深度学习模型的设计、调试、评估、应用和可视化。Keras同样提供了序列化方法,可以方便的帮助搭建神经网络。

model = models.Sequential()

model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)))

model.add(layers.MaxPooling2D((2, 2)))

model.add(layers.Flatten())

model.add(layers.Dense(64, activation='relu'))

model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])

**3.**可视化训练过程

为了方便查看训练过程中准确率的变化,可以借助matplotlib来可视化训练过程。

相关推荐
那个村的李富贵6 分钟前
昇腾CANN跨行业实战:五大新领域AI落地案例深度解析
人工智能·aigc·cann
集简云-软件连接神器9 分钟前
技术实战:集简云语聚AI实现小红书私信接入AI大模型全流程解析
人工智能·小红书·ai客服
松☆9 分钟前
深入理解CANN:面向AI加速的异构计算架构
人工智能·架构
rainbow7242449 分钟前
无基础学AI的入门核心,从基础工具和理论开始学
人工智能
子榆.14 分钟前
CANN 与主流 AI 框架集成:从 PyTorch/TensorFlow 到高效推理的无缝迁移指南
人工智能·pytorch·tensorflow
七月稻草人15 分钟前
CANN生态ops-nn:AIGC的神经网络算子加速内核
人工智能·神经网络·aigc
2501_9248787315 分钟前
数据智能驱动进化:AdAgent 多触点归因与自我学习机制详解
人工智能·逻辑回归·动态规划
芷栀夏17 分钟前
CANN开源实战:基于DrissionPage构建企业级网页自动化与数据采集系统
运维·人工智能·开源·自动化·cann
物联网APP开发从业者18 分钟前
2026年AI智能软硬件开发领域十大权威认证机构深度剖析
人工智能
MSTcheng.22 分钟前
构建自定义算子库:基于ops-nn和aclnn两阶段模式的创新指南
人工智能·cann