多头注意力机制

1、什么是多头注意力机制

从多头注意力的结构图中,貌似这个所谓的多个头就是指多组线性变换,但是并不是,只使用了一组线性变换层,即三个变换张量对 Q、K、V 分别进行线性变换,这些变化不会改变原有张量的尺寸,因此每个变换矩阵都是方阵,得到输出结果后,多头的作用才开始显现,每一个头开始从词义层面分割输出的张量,也就是每一个头都先获得一组 Q、K、V进行注意力机制的计算,但是句子中的每个词的表示只获得一部分,也就是只分割了最后一维的词嵌入向量,这就是所谓的多头,将每个头获取的输入送到注意力机制中就形成了多头注意力机制。

2、多头注意力机制结构图

3、多头注意力机制的作用

这种结构的设计能让每个注意力机制去优化每个词汇的不同特征部分,从而均衡同一种注意力机制可能产生的偏差,让词义拥有来自多元的表达,实验表名可以从而提升模型效果

相关推荐
点云SLAM1 分钟前
弱纹理图像特征匹配算法推荐汇总
人工智能·深度学习·算法·计算机视觉·机器人·slam·弱纹理图像特征匹配
mwq3012321 分钟前
旋转位置编码RoPE:用旋转艺术,解开 Transformer 的位置之谜
人工智能
赵得C26 分钟前
人工智能的未来之路:华为全栈技术链与AI Agent应用实践
人工智能·华为
糖葫芦君33 分钟前
25-GRPO IS SECRETLY A PROCESS REWARD MODEL
人工智能·大模型
俊男无期41 分钟前
【AI入门】通俗易懂讲AI(初稿)
人工智能
喜欢吃豆1 小时前
GraphRAG 技术教程:从核心概念到高级架构
人工智能·架构·大模型
王哈哈^_^1 小时前
YOLOv11视觉检测实战:安全距离测算全解析
人工智能·数码相机·算法·yolo·计算机视觉·目标跟踪·视觉检测
AI浩2 小时前
FeatEnHancer:在低光视觉下增强目标检测及其他任务的分层特征
人工智能·目标检测·目标跟踪