TensorFlow入门(十一、图的基本操作)

建立图

一个TensorFlow程序默认是建立一个图的,除了系统自动建图以外,还可以用tf.Graph()手动建立,并做一些其他的操作

如果想要获得程序一开始默认的图,可以使用tf.get_default_graph()函数

如果想要重新建立一张图代替原来的图,可以使用tf.reset_default_graph()函数

注意:在使用tf.reset_default_graph函数时必须保证当前图的资源已经全部释放,否则会报错。例如如果在当前图中使用tf.InteractiveSession函数建立了一个会话,在会话结束时却没有调用close进行关闭,那么再执行tf.reset_default_graph函数时,就会报错。

示例代码如下:

python 复制代码
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()

var1 = tf.constant(8.0)
print("var1:",var1.graph)

mygraph = tf.Graph()
with mygraph.as_default():
    var2 = tf.constant(9.9)
    print("var2:",var2.graph)
    print("mygraph:",mygraph)
    
mygraph2 = tf.get_default_graph()
print("mygraph2:",mygraph2)

tf.reset_default_graph()
mygraph3 = tf.get_default_graph()
print("mygraph3:",mygraph3)

获取张量

在图里面可以通过名字得到其对应的元素,使用的是get_tensor_by_name()函数

示例代码如下:

python 复制代码
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()

var1 = tf.constant(8.0)
print("var1:",var1.graph)

mygraph = tf.Graph()
with mygraph.as_default():
    var2 = tf.constant(9.9)
    print("var2:",var2.graph)
    print("mygraph:",mygraph)
    
mygraph2 = tf.get_default_graph()
print("mygraph2:",mygraph2)

tf.reset_default_graph()
mygraph3 = tf.get_default_graph()
print("mygraph3:",mygraph3)

t1 = mygraph.get_tensor_by_name(name = var2.name)
print(t1)

print("var2.name:",var2.name)

获取元素列表

如果想看一下图中的全部元素,可以使用get_operations()函数来实现。

示例代码如下:

python 复制代码
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()

var1 = tf.constant(8.0)
print("var1:",var1.graph)

mygraph = tf.Graph()
with mygraph.as_default():
    var2 = tf.constant(9.9)
    var3 = tf.constant(11.9)
    print("var2:",var2.graph)
    print("mygraph:",mygraph)
    
mygraph2 = tf.get_default_graph()
print("mygraph2:",mygraph2)

tf.reset_default_graph()
mygraph3 = tf.get_default_graph()
print("mygraph3:",mygraph3)

t1 = mygraph.get_tensor_by_name(name = var2.name)
print(t1)

print("var2.name:",var2.name)

t2 = mygraph.get_operations()
print(t2)

获取对象

使用tf.Graph.as_graph_element(obj,allow_tensor = True,allow_operation = True)函数,可以根据对象来获取元素,即传入的是一个对象,返回一个张量或是一个OP。该函数具有验证和转换功能。

示例代码如下:

python 复制代码
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()

var1 = tf.constant(8.0)
print("var1:",var1.graph)

mygraph = tf.Graph()
with mygraph.as_default():
    var2 = tf.constant(9.9)
    var3 = tf.constant(11.9)
    print("var2:",var2.graph)
    print("mygraph:",mygraph)
    
mygraph2 = tf.get_default_graph()
print("mygraph2:",mygraph2)

tf.reset_default_graph()
mygraph3 = tf.get_default_graph()
print("mygraph3:",mygraph3)

t1 = mygraph.get_tensor_by_name(name = var2.name)
print(t1)

print("var2.name:",var2.name)

t2 = mygraph.get_operations()
print(t2)

t3 = mygraph.as_graph_element(var2)
print(t3)

获取节点操作

使用get_operation_by_name()函数

示例代码如下:

python 复制代码
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()

mygraph = tf.get_default_graph()

x1 = tf.constant([[2.3,6.6]])
x2 = tf.constant([[5.3],[9.6]])
tensor1 = tf.matmul(x1,x2,name = "op")

test2 = mygraph.get_operation_by_name(tensor1.op.name)
print(test2)
相关推荐
学渣676563 分钟前
什么时候使用Python 虚拟环境(venv)而不用conda
开发语言·python·conda
飞哥数智坊7 分钟前
打工人周末充电:15条AI资讯助你领先一小步
人工智能
Tech Synapse10 分钟前
基于CARLA与PyTorch的自动驾驶仿真系统全栈开发指南
人工智能·opencv·sqlite
layneyao11 分钟前
深度强化学习(DRL)实战:从AlphaGo到自动驾驶
人工智能·机器学习·自动驾驶
悲喜自渡72120 分钟前
线性代数(一些别的应该关注的点)
python·线性代数·机器学习
海特伟业1 小时前
隧道调频广播覆盖的实现路径:隧道无线广播技术赋能行车安全升级,隧道汽车广播收音系统助力隧道安全管理升级
人工智能
Huanzhi_Lin1 小时前
python源码打包为可执行的exe文件
python
CareyWYR1 小时前
每周AI论文速递(250421-250425)
人工智能
声声codeGrandMaster1 小时前
django之账号管理功能
数据库·后端·python·django
追逐☞1 小时前
机器学习(10)——神经网络
人工智能·神经网络·机器学习