TensorFlow入门(十一、图的基本操作)

建立图

一个TensorFlow程序默认是建立一个图的,除了系统自动建图以外,还可以用tf.Graph()手动建立,并做一些其他的操作

如果想要获得程序一开始默认的图,可以使用tf.get_default_graph()函数

如果想要重新建立一张图代替原来的图,可以使用tf.reset_default_graph()函数

注意:在使用tf.reset_default_graph函数时必须保证当前图的资源已经全部释放,否则会报错。例如如果在当前图中使用tf.InteractiveSession函数建立了一个会话,在会话结束时却没有调用close进行关闭,那么再执行tf.reset_default_graph函数时,就会报错。

示例代码如下:

python 复制代码
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()

var1 = tf.constant(8.0)
print("var1:",var1.graph)

mygraph = tf.Graph()
with mygraph.as_default():
    var2 = tf.constant(9.9)
    print("var2:",var2.graph)
    print("mygraph:",mygraph)
    
mygraph2 = tf.get_default_graph()
print("mygraph2:",mygraph2)

tf.reset_default_graph()
mygraph3 = tf.get_default_graph()
print("mygraph3:",mygraph3)

获取张量

在图里面可以通过名字得到其对应的元素,使用的是get_tensor_by_name()函数

示例代码如下:

python 复制代码
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()

var1 = tf.constant(8.0)
print("var1:",var1.graph)

mygraph = tf.Graph()
with mygraph.as_default():
    var2 = tf.constant(9.9)
    print("var2:",var2.graph)
    print("mygraph:",mygraph)
    
mygraph2 = tf.get_default_graph()
print("mygraph2:",mygraph2)

tf.reset_default_graph()
mygraph3 = tf.get_default_graph()
print("mygraph3:",mygraph3)

t1 = mygraph.get_tensor_by_name(name = var2.name)
print(t1)

print("var2.name:",var2.name)

获取元素列表

如果想看一下图中的全部元素,可以使用get_operations()函数来实现。

示例代码如下:

python 复制代码
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()

var1 = tf.constant(8.0)
print("var1:",var1.graph)

mygraph = tf.Graph()
with mygraph.as_default():
    var2 = tf.constant(9.9)
    var3 = tf.constant(11.9)
    print("var2:",var2.graph)
    print("mygraph:",mygraph)
    
mygraph2 = tf.get_default_graph()
print("mygraph2:",mygraph2)

tf.reset_default_graph()
mygraph3 = tf.get_default_graph()
print("mygraph3:",mygraph3)

t1 = mygraph.get_tensor_by_name(name = var2.name)
print(t1)

print("var2.name:",var2.name)

t2 = mygraph.get_operations()
print(t2)

获取对象

使用tf.Graph.as_graph_element(obj,allow_tensor = True,allow_operation = True)函数,可以根据对象来获取元素,即传入的是一个对象,返回一个张量或是一个OP。该函数具有验证和转换功能。

示例代码如下:

python 复制代码
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()

var1 = tf.constant(8.0)
print("var1:",var1.graph)

mygraph = tf.Graph()
with mygraph.as_default():
    var2 = tf.constant(9.9)
    var3 = tf.constant(11.9)
    print("var2:",var2.graph)
    print("mygraph:",mygraph)
    
mygraph2 = tf.get_default_graph()
print("mygraph2:",mygraph2)

tf.reset_default_graph()
mygraph3 = tf.get_default_graph()
print("mygraph3:",mygraph3)

t1 = mygraph.get_tensor_by_name(name = var2.name)
print(t1)

print("var2.name:",var2.name)

t2 = mygraph.get_operations()
print(t2)

t3 = mygraph.as_graph_element(var2)
print(t3)

获取节点操作

使用get_operation_by_name()函数

示例代码如下:

python 复制代码
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()

mygraph = tf.get_default_graph()

x1 = tf.constant([[2.3,6.6]])
x2 = tf.constant([[5.3],[9.6]])
tensor1 = tf.matmul(x1,x2,name = "op")

test2 = mygraph.get_operation_by_name(tensor1.op.name)
print(test2)
相关推荐
昨日之日20061 小时前
Moonshine - 新型开源ASR(语音识别)模型,体积小,速度快,比OpenAI Whisper快五倍 本地一键整合包下载
人工智能·whisper·语音识别
浮生如梦_1 小时前
Halcon基于laws纹理特征的SVM分类
图像处理·人工智能·算法·支持向量机·计算机视觉·分类·视觉检测
深度学习lover1 小时前
<项目代码>YOLOv8 苹果腐烂识别<目标检测>
人工智能·python·yolo·目标检测·计算机视觉·苹果腐烂识别
热爱跑步的恒川2 小时前
【论文复现】基于图卷积网络的轻量化推荐模型
网络·人工智能·开源·aigc·ai编程
API快乐传递者2 小时前
淘宝反爬虫机制的主要手段有哪些?
爬虫·python
阡之尘埃4 小时前
Python数据分析案例61——信贷风控评分卡模型(A卡)(scorecardpy 全面解析)
人工智能·python·机器学习·数据分析·智能风控·信贷风控
孙同学要努力6 小时前
全连接神经网络案例——手写数字识别
人工智能·深度学习·神经网络
Eric.Lee20216 小时前
yolo v5 开源项目
人工智能·yolo·目标检测·计算机视觉
其实吧37 小时前
基于Matlab的图像融合研究设计
人工智能·计算机视觉·matlab
丕羽7 小时前
【Pytorch】基本语法
人工智能·pytorch·python