TensorFlow入门(十一、图的基本操作)

建立图

一个TensorFlow程序默认是建立一个图的,除了系统自动建图以外,还可以用tf.Graph()手动建立,并做一些其他的操作

如果想要获得程序一开始默认的图,可以使用tf.get_default_graph()函数

如果想要重新建立一张图代替原来的图,可以使用tf.reset_default_graph()函数

注意:在使用tf.reset_default_graph函数时必须保证当前图的资源已经全部释放,否则会报错。例如如果在当前图中使用tf.InteractiveSession函数建立了一个会话,在会话结束时却没有调用close进行关闭,那么再执行tf.reset_default_graph函数时,就会报错。

示例代码如下:

python 复制代码
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()

var1 = tf.constant(8.0)
print("var1:",var1.graph)

mygraph = tf.Graph()
with mygraph.as_default():
    var2 = tf.constant(9.9)
    print("var2:",var2.graph)
    print("mygraph:",mygraph)
    
mygraph2 = tf.get_default_graph()
print("mygraph2:",mygraph2)

tf.reset_default_graph()
mygraph3 = tf.get_default_graph()
print("mygraph3:",mygraph3)

获取张量

在图里面可以通过名字得到其对应的元素,使用的是get_tensor_by_name()函数

示例代码如下:

python 复制代码
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()

var1 = tf.constant(8.0)
print("var1:",var1.graph)

mygraph = tf.Graph()
with mygraph.as_default():
    var2 = tf.constant(9.9)
    print("var2:",var2.graph)
    print("mygraph:",mygraph)
    
mygraph2 = tf.get_default_graph()
print("mygraph2:",mygraph2)

tf.reset_default_graph()
mygraph3 = tf.get_default_graph()
print("mygraph3:",mygraph3)

t1 = mygraph.get_tensor_by_name(name = var2.name)
print(t1)

print("var2.name:",var2.name)

获取元素列表

如果想看一下图中的全部元素,可以使用get_operations()函数来实现。

示例代码如下:

python 复制代码
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()

var1 = tf.constant(8.0)
print("var1:",var1.graph)

mygraph = tf.Graph()
with mygraph.as_default():
    var2 = tf.constant(9.9)
    var3 = tf.constant(11.9)
    print("var2:",var2.graph)
    print("mygraph:",mygraph)
    
mygraph2 = tf.get_default_graph()
print("mygraph2:",mygraph2)

tf.reset_default_graph()
mygraph3 = tf.get_default_graph()
print("mygraph3:",mygraph3)

t1 = mygraph.get_tensor_by_name(name = var2.name)
print(t1)

print("var2.name:",var2.name)

t2 = mygraph.get_operations()
print(t2)

获取对象

使用tf.Graph.as_graph_element(obj,allow_tensor = True,allow_operation = True)函数,可以根据对象来获取元素,即传入的是一个对象,返回一个张量或是一个OP。该函数具有验证和转换功能。

示例代码如下:

python 复制代码
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()

var1 = tf.constant(8.0)
print("var1:",var1.graph)

mygraph = tf.Graph()
with mygraph.as_default():
    var2 = tf.constant(9.9)
    var3 = tf.constant(11.9)
    print("var2:",var2.graph)
    print("mygraph:",mygraph)
    
mygraph2 = tf.get_default_graph()
print("mygraph2:",mygraph2)

tf.reset_default_graph()
mygraph3 = tf.get_default_graph()
print("mygraph3:",mygraph3)

t1 = mygraph.get_tensor_by_name(name = var2.name)
print(t1)

print("var2.name:",var2.name)

t2 = mygraph.get_operations()
print(t2)

t3 = mygraph.as_graph_element(var2)
print(t3)

获取节点操作

使用get_operation_by_name()函数

示例代码如下:

python 复制代码
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()

mygraph = tf.get_default_graph()

x1 = tf.constant([[2.3,6.6]])
x2 = tf.constant([[5.3],[9.6]])
tensor1 = tf.matmul(x1,x2,name = "op")

test2 = mygraph.get_operation_by_name(tensor1.op.name)
print(test2)
相关推荐
zoujiahui_201813 小时前
python中模型加速训练accelerate包的用法
开发语言·python
咚咚王者14 小时前
人工智能之数学基础 线性代数:第五章 张量
人工智能·线性代数
民乐团扒谱机14 小时前
【微实验】基于Python实现的实时键盘鼠标触控板拾取检测(VS2019,附完整代码)
python·c#·计算机外设
深蓝电商API14 小时前
2025爬虫技术前沿:AI驱动、多模态与反反爬的军备竞赛
人工智能·爬虫
深度学习实战训练营14 小时前
nnU-Net:基于unet的医学图像分割自适应框架,自动配置超参数与结构-k学长深度学习专栏
人工智能·深度学习
lybugproducer14 小时前
深度学习专题:模型训练的张量并行(一)
人工智能·深度学习·transformer
牛老师讲GIS14 小时前
2025年前端开发的未来:服务器优先、人工智能驱动、更贴近底层
运维·服务器·人工智能
jinglong.zha14 小时前
【Yolov8】图形化检测视频-源码免费分享
人工智能·yolo·目标跟踪·视觉检测·yolov8·yolov11
一个帅气昵称啊14 小时前
.Net——AI智能体开发基于 Microsoft Agent Framework 实现第三方聊天历史存储
人工智能·microsoft·.net
心本无晴.14 小时前
拣学--基于vue3和django框架实现的辅助考研系统
vue.js·python·mysql·考研·django·dify