一种超轻量级神经网络加速器实现

一 目标

针对资源受限,SWaP敏感的边缘计算应用场景,探索稳健而高效的计算架构,算法和应用。 并完成超轻量级神经网络加速器设计和验证。

1、实时性能:30~50FPS

2、超低功耗:mW级别

3、资源受限:包括计算资源/存储资源/通信带宽等

4、成本低廉:

二 设计分析

。。。

三 验证

网络模型:优化设计的YOLOV3

FPGA硬件平台:ZYNQ7020

性能:35FPS(150MHz)

资源消耗7K LUT

四 参考文献

[1] TinyNPU

[2] DAC-SDC

相关推荐
湫ccc7 分钟前
《Opencv》基础操作详解(3)
人工智能·opencv·计算机视觉
Jack_pirate17 分钟前
深度学习中的特征到底是什么?
人工智能·深度学习
微凉的衣柜31 分钟前
微软在AI时代的战略布局和挑战
人工智能·深度学习·microsoft
GocNeverGiveUp44 分钟前
机器学习1-简单神经网络
人工智能·机器学习
Schwertlilien1 小时前
图像处理-Ch2-空间域的图像增强
人工智能
智慧化智能化数字化方案1 小时前
深入解读数据资产化实践指南(2024年)
大数据·人工智能·数据资产管理·数据资产入表·数据资产化实践指南
哦哦~9211 小时前
深度学习驱动的油气开发技术与应用
大数据·人工智能·深度学习·学习
智慧化智能化数字化方案2 小时前
120页PPT讲解ChatGPT如何与财务数字化转型的业财融合
人工智能·chatgpt
矩阵推荐官hy147622 小时前
短视频矩阵系统种类繁多,应该如何对比选择?
人工智能·python·矩阵·流量运营
lshzdq2 小时前
【机器人】机械臂轨迹和转矩控制对比
人工智能·算法·机器人