TensorFlow入门(十三、动态图Eager)

一个图(Graph)代表一个计算任务,且在模型运行时,需要把图放入会话(session)里被启动。一旦模型开始运行,图就无法修改了。TensorFlow把这种图一般称为静态图。

动态图是指在Python中代码被调用后,其操作立即被执行的计算。

它与静态图最大的区别是不需要使用session来建立会话。即在静态图中,需要在会话中调用run方法才可以获得某个张量、常量或变量的具体值,而在动态图里,在创建动态图的过程中,默认已经建立了一个session。所有的代码都在该session中进行,而且该session具有进程相同的生命周期。

使用动态图时,直接运行就可以计算得到 它们的具体值,甚至还可以和numpy数组混合计算。它使得TensorFlow的学习变得更简单,也使研发更直观。

Eager Execution是一种命令式编程环境,运行后返回具体的值。一般更多用于研究和实验。它的优点有:

①直观的界面,可以自然地组织代码结构并使用Python数据结构。快速迭代小模型和小型数据集

②更轻松的调试功能,直接调用操作以检查正在运行的模型并测试更改。使用标准Python调试工具可以进行即时错误报告

③自然控制流程。使用Python控制流程而不是图控制流程,简化了动态模型的规范

④适用于几乎所有可用的TensorFlow运算

⑤它还可以在GPU上运行,提高神经网络的训练速度

激活Eager模式

激活Eager模式的代码如下:

python 复制代码
import tensorflow as tf
tf.enable_eager_execution()

如果程序的后面需要优化器,也可以在这里先定义:

python 复制代码
tfe = tf.contrib.eager

注意:Eager模式在程序开始就要激活,并且不能与普通模式混用。一旦开启Eager模式便不能撤销,不能实现静态图中关闭session的功能,且只执行一次,无法实现多session操作。这也是动态图的不足之处。如果当前代码只需要一个session来完成的话,可以优先选择动态图Eager来实现。

使用Eager模式

示例代码如下:

python 复制代码
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
tf.enable_eager_execution()

import numpy as np

a = tf.constant([[1,2],[3,4]])
print("a = ",a)

b = tf.Variable(np.zeros((2,2)))
print("\n b = ",b)

c = [[2.]]
m = tf.matmul(c,c)
print("hello,{}".format(m))

可以看到在Eager执行下,a和b操作后的返回值是tf.Tensor,其包含了具体值。不再像Graph模式下那样只是一个计算图节点的符号句柄。由于Eager模式可以立即看到结果,非常有助于程序debug。

Eager模式下的基本运算

TensorFlow提供了丰富的操作库,如tf.add,tf.matmul,tf.square等,使用它们生成的结果都是张量Tensor。在Eager模式下,可以直接使用这些操作输出运算结果。

示例代码如下:

python 复制代码
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
tf.enable_eager_execution()

print(tf.add(1,2))
print(tf.square(8))
print(tf.reduce_sum([1,2,3]))
print(tf.square(2) + tf.square(3))

动态控制流

在Eager模式下,TensorFlow也可以像Python定义函数一样,自定义函数,实现动态控制流。

示例代码如下:

python 复制代码
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
tf.enable_eager_execution()

def function(num):
    counter = tf.constant(0)
    num = tf.convert_to_tensor(num)
    for num in range(1,num.numpy() + 2):
        num = tf.constant(num)
        if int(num % 2) == 0 and int(num % 4) == 0:
            print("good")
        elif int(num % 2) == 0:
            print("hi")
        elif int(num % 4) == 0:
            print("hello")
        else:
            print(num.numpy())
        counter += 1
        
function(16)

在实际的编程过程中,为了提高效率,也可以在Eager模式下训练模型。

示例代码如下:

python 复制代码
import tensorflow as tf
tf.compat.v1.enable_eager_execution()

#创建训练数据
Num_Test = 1000
train_X = tf.compat.v1.random_normal([Num_Test])
train_Y = train_X * 5 +2

#搭建正向模型
#定义运算结构
def prediction(input,weight,bias):
    return input * weight + bias

#搭建反向模型
def loss(weights,biases):
    error = prediction(train_X,weights,biases) - train_Y
    return tf.reduce_mean(tf.square(error))

def grad(weights,biases):
    #前向计算,得到loss,同时将操作记录到tape上,用于计算梯度
    with tf.GradientTape() as tape:
        loss_value = loss(weights,biases)
        #反向播放tape,得到梯度
        return tape.gradient(loss_value,[weights,biases])
    
#定义迭代参数和学习率
train_steps = 200
learning_rate = 0.01

#定义学习参数的变量
W = tf.Variable(5.)
B = tf.Variable(10.)

print("Initial loss:{:.3f}".format(loss(W,B)))

#训练模型
for i in range(train_steps):
    dW,dB = grad(W,B)
    W.assign_sub(dW * learning_rate)
    B.assign_sub(dB * learning_rate)
    if i % 20 == 0:
        print("Loss at step {:03d}:{:.3f}".format(i,loss(W,B)))
        
print("Final loss:{:.3f}".format(loss(W,B)))
print("W = {},B = {}".format(W.numpy(),B.numpy()))
相关推荐
程序员岳焱1 分钟前
深度剖析:Spring AI 与 LangChain4j,谁才是 Java 程序员的 AI 开发利器?
java·人工智能·后端
有风南来2 分钟前
算术图片验证码(四则运算)+selenium
自动化测试·python·selenium·算术图片验证码·四则运算验证码·加减乘除图片验证码
wangjinjin1802 分钟前
Python Excel 文件处理:openpyxl 与 pandas 库完全指南
开发语言·python
Q同学2 分钟前
TORL:工具集成强化学习,让大语言模型学会用代码解题
深度学习·神经网络·llm
柠檬味拥抱3 分钟前
AI智能体在金融决策系统中的自主学习与行为建模方法探讨
人工智能
禺垣3 分钟前
图神经网络(GNN)模型的基本原理
深度学习
智驱力人工智能13 分钟前
智慧零售管理中的客流统计与属性分析
人工智能·算法·边缘计算·零售·智慧零售·聚众识别·人员计数
workflower32 分钟前
以光量子为例,详解量子获取方式
数据仓库·人工智能·软件工程·需求分析·量子计算·软件需求
壹氿35 分钟前
Supersonic 新一代AI数据分析平台
人工智能·数据挖掘·数据分析
柠石榴38 分钟前
【论文阅读笔记】《A survey on deep learning approaches for text-to-SQL》
论文阅读·笔记·深度学习·nlp·text-to-sql