【自动驾驶】PETR/PETRv2/StreamPETR论文分析

1.PETR

PETR网络结构如下,主要包括image-backbone, 3D Coordinates Generator, 3D Position Encoder, transformer Decoder

1.1 Images Backbone

采用resnet 或者 vovNet,下面的x表示concatenate

1.2 3D Coordinates Generator

坐标生成跟lss类似,假设一系列深度值,再有相机内存进行坐标转换

1.3 3D Position Encoder

将多视图2D图像特征输入到1×1卷积层以进行降维。这个由三维坐标生成器生成的三维坐标被转换为通过多层感知的3D位置嵌入。3D位置嵌入与同一视图的2D图像特征相加,生成3D位置感知功能。最后,3D位置感知特征被展平并且用作变换器解码器的输入。

这里2D部分是经过三角函数编码后与3DpositionEmb相加作为K, 原始的iamge feature作为V 输入transformerDecoder

1.4 Transformer Decoder

DET Query Generator

为了缓解在3D场景中的收敛困难,类似于Anchor DETR,我们首先在均匀分布的3D世界空间中初始化一组可学习的锚点从0到1。然后将3D锚点的坐标输入到小MLP具有两个线性层的网络,并生成初始对象查询Q0。在我们的实践中,在三维空间中使用锚点可以保证收敛在采用DETR中的设置或生成锚点的同时在BEV空间中不能实现令人满意的检测性能。

1.5 测试

训练资源如下:

代码执行图:

可视化效果

时延测试:

|-----------------------|-----------------|
| extract_feat_time | 0.016 6 |
| positional_encod_time | 0.0150 |
| transformer_time | 0.0074 |
| fnn_time | 0.0031 |
| get_bboxes_time | 0.0015 |

2. PETRV2

petrv2的整体框图如下,与petr不同的地方在于加入了时序模块,分割头,以及改变了 3D Position Encoder

2.1 与petr差异

PE : 3D Position Encoder部分

Query Generator

3. StreamPETR

StreamPETR的总体架构。内存队列存储历史对象查询。在Propagation Transformer中,最近的对象查询依次与历史查询和当前图像特征交互,以获得时间和空间信息。输出查询被进一步用于生成检测结果,并且前K个非背景目标查询被推送到存储器队列中。通过存储器队列的循环更新,长期时间信息被逐帧传播。

3.1 Propagation Transformer模块

Propagation Transformer和MLN 的细节。在PT中,object查询与混合查询和图像特征进行迭代交互。运动感知层规范化对运动属性进行编码(姿态、时间戳、速度),并隐式地执行补偿。不同色调的矩形象征着来自不同帧,灰色矩形表示当前帧的初始化查询,虚线矩形对应于背景查询。

3.2 Hybrid Attention

Hybrid Attention在这里用于取代原生的self-attention。首先它起到self-attention的作用,对于当前帧的重复框进行抑制。其次,当前帧的object query还需要和历史帧object query做类似cross attention操作,进行时序的交互。 由于hybrid queries远小于cross attention中 image token的数量,因此所带来的额外计算量可以忽略不计。此外历史object query也会传递到当前帧为当前帧提供更好的初始化(propagate query)。

其他部分与petrv2模块相同

相关推荐
Codebee12 分钟前
能力中心 (Agent SkillCenter):开启AI技能管理新时代
人工智能
聆风吟º1 小时前
CANN runtime 全链路拆解:AI 异构计算运行时的任务管理与功能适配技术路径
人工智能·深度学习·神经网络·cann
uesowys1 小时前
Apache Spark算法开发指导-One-vs-Rest classifier
人工智能·算法·spark
AI_56781 小时前
AWS EC2新手入门:6步带你从零启动实例
大数据·数据库·人工智能·机器学习·aws
User_芊芊君子1 小时前
CANN大模型推理加速引擎ascend-transformer-boost深度解析:毫秒级响应的Transformer优化方案
人工智能·深度学习·transformer
智驱力人工智能2 小时前
小区高空抛物AI实时预警方案 筑牢社区头顶安全的实践 高空抛物检测 高空抛物监控安装教程 高空抛物误报率优化方案 高空抛物监控案例分享
人工智能·深度学习·opencv·算法·安全·yolo·边缘计算
qq_160144872 小时前
亲测!2026年零基础学AI的入门干货,新手照做就能上手
人工智能
Howie Zphile2 小时前
全面预算管理难以落地的核心真相:“完美模型幻觉”的认知误区
人工智能·全面预算
人工不智能5772 小时前
拆解 BERT:Output 中的 Hidden States 到底藏了什么秘密?
人工智能·深度学习·bert
盟接之桥2 小时前
盟接之桥说制造:引流品 × 利润品,全球电商平台高效产品组合策略(供讨论)
大数据·linux·服务器·网络·人工智能·制造