机器学习之自训练&协同训练

前言

监督学习往往需要大量的标注数据, 而标注数据的成本比较高 . 因此 , 利用大量的无标注数据来提高监督学习的效果有着十分重要的意义. 这种利用少量标注数据和大量无标注数据进行学习的方式称为 半监督学习 ( Semi-Supervised Learning, SSL ). 本文将介绍两种半监督学习算法 : 自训练和协同训练 .

自训练

自训练(Self-training )是一种半监督学习的方法,它通过结合有标签数据和无标签数据来提高模型的性能。在自训练中,首先使用有标签数据进行初始模型的训练,然后使用该模型对无标签数据进行预测,并将置信度较高的预测结果作为伪标签加入到有标签数据集中,再重新训练模型。通过迭代这个过程,逐步扩充有标签数据集和改进模型。
自训练流程图

协同训练

协同训练 ( Co-Training ) 是自训练的一种改进方法 , 通过两个基于不同 视角 ( view ) 的分类器来互相促进.
由于不同视角的条件独立性, 在不同视角上训练出来的模型就相当于从不同视角来理解问题, 具有一定的互补性 . 协同训练就是利用这种互补性来进行自训练的一种方法.
首先在训练集上根据不同视角分别训练两个模型𝑓 1 和 𝑓 2 ,然后用 𝑓 1 和 𝑓2 在无标注数据集上进行预测,各选取预测置信度比较高的样本加入训练集,重新训练两个不同视角的模型,并不断重复这个过程.
协同训练结构图

协同训练的基本框架如下:

  1. 初始阶段:将有标签数据集随机分成两个子集,分别为视角 1 和视角 2 。使用视角 1 的特征训练模型 1 ,使用视角 2 的特征训练模型 2 。
  2. 交替迭代:在每次迭代中,使用已训练好的模型对无标签数据进行预测,并选择置信度较高的样本加入到相应的视角的有标签数据集中。
  3. 模型更新:使用扩充后的有标签数据集重新训练模型 1 和模型 2 。
  4. 重复步骤 2 和步骤 3 ,直到满足停止条件(如达到最大迭代次数或模型性能不再提升)。
相关推荐
galaxylove7 小时前
Gartner发布CISO人工智能安全指南:将AI安全治理融入所有网络安全治理体系
人工智能·安全·web安全
依米s7 小时前
2019年人工智能大会核心议题《智联世界无限可能》
人工智能·waic·人工智能大会
IT_陈寒7 小时前
JavaScript开发者必知的7个ES2023新特性,让你的代码效率提升50%
前端·人工智能·后端
咚咚王7 小时前
人工智能之数据分析 Matplotlib:第四章 图形类型
人工智能·数据分析
用户5191495848457 小时前
Ash框架授权绕过漏洞分析:当绕过策略条件评估为真时
人工智能·aigc
用户5191495848457 小时前
Bedrock AgentCore Python SDK:零基础设施部署AI代理的终极方案
人工智能·aigc
Maynor9967 小时前
全网唯一!独家支持 Grok4 Heavy模型 ,教你在国内使用Heavy模型!
人工智能
Ai173163915797 小时前
2025.11.28国产AI计算卡参数信息汇总
服务器·图像处理·人工智能·神经网络·机器学习·视觉检测·transformer
一水鉴天7 小时前
整体设计 定稿 之1 devOps 中台的 结论性表述(豆包助手)
服务器·数据库·人工智能
青云交8 小时前
Java 大视界 -- Java 大数据机器学习模型在电商评论情感分析与产品口碑优化中的应用
机器学习·自然语言处理·lstm·情感分析·java 大数据·电商评论·产品口碑