pytorch 模型部署之Libtorch

Python端生成pt模型文件

python 复制代码
net.load(model_path)
net.eval()
net.to("cuda")

example_input = torch.rand(1, 3, 240, 320).to("cuda")
traced_model = torch.jit.trace(net, example_input)
traced_model.save("model.pt")


output = traced_model(example_input)
# 输出查看是否与c++输出一致。
print(len(output))

C++ 端进行调用

c++环境配置
libtorch常用API

cpp 复制代码
#include <torch/script.h>
#include <torch/torch.h>

#include <iostream>

int main() {
	std::cout <<"cuda::is_available():" << torch::cuda::is_available() << std::endl;
    torch::Tensor tensor = torch::rand({2, 3}).to(at::kCUDA);
    std::cout << tensor << std::endl;
 
       torch::jit::script::Module module;
     
        module = torch::jit::load("/home/yang/Documents/demo/opencv/model.pt");
    

       // 创建一个示例输入
       std::vector<torch::jit::IValue> inputs;
       inputs.push_back(torch::rand({1, 3, 240, 320}).to(at::kCUDA));

       // 运行模型
      // at::Tensor output = module.forward(inputs).toTensor();
        //auto output = module.forward(inputs).toTensorList();
        auto out = module.forward(inputs);
 
        auto tpl = out.toTuple();

        auto out_ct_hm = tpl->elements()[0].toTensor();
        out_ct_hm.print();
        auto out_wh = tpl->elements()[1].toTensor();
        out_wh.print();


       // 打印输出
       //std::cout << output << "\n";

}

可能出错的问题

  1. terminate called after throwing an instance of 'c10::Error'
    what(): open file failed, file path: model.pt (FileAdapter at .../.../caffe2/serialize/file_adapter.cc:11)。 模型路径有问题,使用绝对路径解决。
  2. 'c10::Error' what(): isTensor() INTERNAL ASSERT FAILED。
    很明显,模型的输出应该不是一个 Tensor,可能是一个列表或者元组什么的
相关推荐
Codebee24 分钟前
OODER图生代码框架:Java注解驱动的全栈实现与落地挑战
人工智能
中冕—霍格沃兹软件开发测试33 分钟前
测试用例库建设与管理方案
数据库·人工智能·科技·开源·测试用例·bug
TextIn智能文档云平台39 分钟前
什么是多模态信息抽取,它和传统OCR有什么区别?
大数据·人工智能
番石榴AI40 分钟前
java版的ocr推荐引擎——JiaJiaOCR 2.0重磅升级!纯Java CPU推理,新增手写OCR与表格识别
java·python·ocr
Linux后台开发狮1 小时前
DeepSeek-R1 技术剖析
人工智能·机器学习
拾荒的小海螺1 小时前
开源项目:AI-Writer 小说 AI 生成器
人工智能
时光轻浅,半夏挽歌1 小时前
python不同格式文件的读写方式(json等)
python·json
Xiaoxiaoxiao02091 小时前
情感 AI:让机器真正理解人的下一代智能——以 GAEA 为例的情绪计算探索
人工智能
测试人社区-千羽1 小时前
边缘计算场景下的智能测试挑战
人工智能·python·安全·开源·智能合约·边缘计算·分布式账本
抽象带篮子1 小时前
Pytorch Lightning 框架运行顺序
人工智能·pytorch·python