pytorch 模型部署之Libtorch

Python端生成pt模型文件

python 复制代码
net.load(model_path)
net.eval()
net.to("cuda")

example_input = torch.rand(1, 3, 240, 320).to("cuda")
traced_model = torch.jit.trace(net, example_input)
traced_model.save("model.pt")


output = traced_model(example_input)
# 输出查看是否与c++输出一致。
print(len(output))

C++ 端进行调用

c++环境配置
libtorch常用API

cpp 复制代码
#include <torch/script.h>
#include <torch/torch.h>

#include <iostream>

int main() {
	std::cout <<"cuda::is_available():" << torch::cuda::is_available() << std::endl;
    torch::Tensor tensor = torch::rand({2, 3}).to(at::kCUDA);
    std::cout << tensor << std::endl;
 
       torch::jit::script::Module module;
     
        module = torch::jit::load("/home/yang/Documents/demo/opencv/model.pt");
    

       // 创建一个示例输入
       std::vector<torch::jit::IValue> inputs;
       inputs.push_back(torch::rand({1, 3, 240, 320}).to(at::kCUDA));

       // 运行模型
      // at::Tensor output = module.forward(inputs).toTensor();
        //auto output = module.forward(inputs).toTensorList();
        auto out = module.forward(inputs);
 
        auto tpl = out.toTuple();

        auto out_ct_hm = tpl->elements()[0].toTensor();
        out_ct_hm.print();
        auto out_wh = tpl->elements()[1].toTensor();
        out_wh.print();


       // 打印输出
       //std::cout << output << "\n";

}

可能出错的问题

  1. terminate called after throwing an instance of 'c10::Error'
    what(): open file failed, file path: model.pt (FileAdapter at .../.../caffe2/serialize/file_adapter.cc:11)。 模型路径有问题,使用绝对路径解决。
  2. 'c10::Error' what(): isTensor() INTERNAL ASSERT FAILED。
    很明显,模型的输出应该不是一个 Tensor,可能是一个列表或者元组什么的
相关推荐
羊小猪~~1 分钟前
神经网络基础--什么是正向传播??什么是方向传播??
人工智能·pytorch·python·深度学习·神经网络·算法·机器学习
AI小杨2 分钟前
【车道线检测】一、传统车道线检测:基于霍夫变换的车道线检测史诗级详细教程
人工智能·opencv·计算机视觉·霍夫变换·车道线检测
晨曦_子画6 分钟前
编程语言之战:AI 之后的 Kotlin 与 Java
android·java·开发语言·人工智能·kotlin
道可云8 分钟前
道可云人工智能&元宇宙每日资讯|2024国际虚拟现实创新大会将在青岛举办
大数据·人工智能·3d·机器人·ar·vr
人工智能培训咨询叶梓17 分钟前
探索开放资源上指令微调语言模型的现状
人工智能·语言模型·自然语言处理·性能优化·调优·大模型微调·指令微调
zzZ_CMing17 分钟前
大语言模型训练的全过程:预训练、微调、RLHF
人工智能·自然语言处理·aigc
newxtc19 分钟前
【旷视科技-注册/登录安全分析报告】
人工智能·科技·安全·ddddocr
成都古河云20 分钟前
智慧场馆:安全、节能与智能化管理的未来
大数据·运维·人工智能·安全·智慧城市
UCloud_TShare22 分钟前
浅谈语言模型推理框架 vLLM 0.6.0性能优化
人工智能
软工菜鸡27 分钟前
预训练语言模型BERT——PaddleNLP中的预训练模型
大数据·人工智能·深度学习·算法·语言模型·自然语言处理·bert