Flink 中kafka broker缩容导致Task一直重启

背景

Flink版本 1.12.2

Kafka 客户端 2.4.1

在公司的Flink平台运行了一个读Kafka计算DAU的流程序,由于公司Kafka的缩容,直接导致了该程序一直在重启,重启了一个小时都还没恢复(具体的所容操作是下掉了四台kafka broker,而当时flink配置了12台kafka broker),当时具体的现场如下:

JobManaer上的日志如下:
2023-10-07 10:02:52.975 INFO  org.apache.flink.runtime.executiongraph.ExecutionGraph - Source: TableSourceScan(table=[[default_catalog, default_database, ubt_start, watermark=[-(LOCALTIMESTAMP, 1000:INTERVAL SECOND)]]]) (34/64) (e33d9ad0196a71e8eb551c181eb779b5) switched from RUNNING to FAILED on container_e08_1690538387235_2599_01_000010 @ task-xxxx-shanghai.emr.aliyuncs.com (dataPort=xxxx).
org.apache.flink.streaming.connectors.kafka.internals.Handover$ClosedException: null
        at org.apache.flink.streaming.connectors.kafka.internals.Handover.close(Handover.java:177)
        at org.apache.flink.streaming.connectors.kafka.internals.KafkaFetcher.cancel(KafkaFetcher.java:164)
        at org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumerBase.cancel(FlinkKafkaConsumerBase.java:945)
        at org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumerBase.lambda$createAndStartDiscoveryLoop$2(FlinkKafkaConsumerBase.java:913)
        at java.lang.Thread.run(Thread.java:750)


对应的 TaskManager(task-xxxx-shanghai.emr.aliyuncs.com)上的日志如下:

2023-10-07 10:02:24.604 WARN  org.apache.kafka.clients.NetworkClient - [Consumer clientId=xxxx] Connection to node 46129 (sh-bs-b1-303-i14-kafka-129-46.ximalaya.local/192.168.129.46:9092) could not be established. Broker may not be available.


2023-10-07 10:02:52.939 WARN  org.apache.flink.runtime.taskmanager.Task - Source: TableSourceScan(t) (34/64)#0 (e33d9ad0196a71e8eb551c181eb779b5) switched from RUNNING to FAILED.
org.apache.flink.streaming.connectors.kafka.internals.Handover$ClosedException: null
        at org.apache.flink.streaming.connectors.kafka.internals.Handover.close(Handover.java:177)
        at org.apache.flink.streaming.connectors.kafka.internals.KafkaFetcher.cancel(KafkaFetcher.java:164)
        at org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumerBase.cancel(FlinkKafkaConsumerBase.java:945)
        at org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumerBase.lambda$createAndStartDiscoveryLoop$2(FlinkKafkaConsumerBase.java:913)
        at java.lang.Thread.run(Thread.java:750)

2023-10-07 10:04:58.205 WARN  org.apache.kafka.clients.NetworkClient - [Consumer clientId=xxx, groupId=xxxx] Connection to node -4 (xxxx:909) could not be established. Broker may not be available.
2023-10-07 10:04:58.205 WARN  org.apache.kafka.clients.NetworkClient - [Consumer clientId=xxx, groupId=xxxx] Bootstrap broker sxxxx:909 (id: -4 rack: null) disconnected
2023-10-07 10:04:58.206 WARN  org.apache.kafka.clients.NetworkClient - [Consumer clientId=xxx, groupId=xxxxu] Connection to node -5 (xxxx:9092) could not be established. Broker may not be available.
2023-10-07 10:04:58.206 WARN  org.apache.kafka.clients.NetworkClient - [Consumer clientId=xxx, groupId=xxxxu] Bootstrap broker xxxx:9092 (id: -5 rack: null) disconnected


2023-10-07 10:08:15.541 WARN  org.apache.flink.runtime.taskmanager.Task - Source: TableSourceScan(xxx) switched from RUNNING to FAILED.
org.apache.kafka.common.errors.TimeoutException: Timeout expired while fetching topic metadata

当时Flink中kafka source的相关配置如下:

scan.topic-partition-discovery.interval  300000
restart-strategy.type fixed-delay
restart-strategy.fixed-delay.attempts 50000000
jobmanager.execution.failover-strategy region

结论以及解决

目前在kafka 消费端有两个参数default.api.timeout.ms (默认60000),request.timeout.ms (默认30000),这两个参数来控制kakfa的客户端从服务端请求超时,也就是说每次请求的超时时间是30s,超时之后可以再重试,如果在60s内请求没有得到任何回应,则会报TimeOutException ,具体的见如下分析,

我们在flink kafka connector中通过设置如下参数来解决:

`properties.default.api.timeout.ms` = '600000',
`properties.request.timeout.ms` = '5000',
// max.block.ms是设置kafka producer的超时
`properties.max.block.ms` = '600000',

分析

在Flink中对于Kafka的Connector的DynamicTableSourceFactoryKafkaDynamicTableFactory ,这里我们只讨论kafka作为source的情况,

而该类的方法createDynamicTableSource 最终会被调用,至于具体的调用链可以参考Apache Hudi初探(四)(与flink的结合)--Flink Sql中hudi的createDynamicTableSource/createDynamicTableSink/是怎么被调用--只不过把Sink改成Source就可以了,所以最终会到KafkaDynamicSource类:

@Override
    public ScanRuntimeProvider getScanRuntimeProvider(ScanContext context) {
        final DeserializationSchema<RowData> keyDeserialization =
                createDeserialization(context, keyDecodingFormat, keyProjection, keyPrefix);

        final DeserializationSchema<RowData> valueDeserialization =
                createDeserialization(context, valueDecodingFormat, valueProjection, null);

        final TypeInformation<RowData> producedTypeInfo =
                context.createTypeInformation(producedDataType);

        final FlinkKafkaConsumer<RowData> kafkaConsumer =
                createKafkaConsumer(keyDeserialization, valueDeserialization, producedTypeInfo);

        return SourceFunctionProvider.of(kafkaConsumer, false);
    }

该类的getScanRuntimeProvider 方法会被调用,所有kafka相关的操作都可以追溯到FlinkKafkaConsumer类(继承FlinkKafkaConsumerBase)中,对于该类重点的方法如下:

    @Override
    public final void initializeState(FunctionInitializationContext context) throws Exception {

        OperatorStateStore stateStore = context.getOperatorStateStore();

        this.unionOffsetStates =
                stateStore.getUnionListState(
                        new ListStateDescriptor<>(
                                OFFSETS_STATE_NAME,
                                createStateSerializer(getRuntimeContext().getExecutionConfig())));

       ... 
    }

   @Override
    public void open(Configuration configuration) throws Exception {
        // determine the offset commit mode
        this.offsetCommitMode =
                OffsetCommitModes.fromConfiguration(
                        getIsAutoCommitEnabled(),
                        enableCommitOnCheckpoints,
                        ((StreamingRuntimeContext) getRuntimeContext()).isCheckpointingEnabled());

        // create the partition discoverer
        this.partitionDiscoverer =
                createPartitionDiscoverer(
                        topicsDescriptor,
                        getRuntimeContext().getIndexOfThisSubtask(),
                        getRuntimeContext().getNumberOfParallelSubtasks());
        this.partitionDiscoverer.open();

        subscribedPartitionsToStartOffsets = new HashMap<>();
        final List<KafkaTopicPartition> allPartitions = partitionDiscoverer.discoverPartitions();
        if (restoredState != null) {
            ...
        } else {
            // use the partition discoverer to fetch the initial seed partitions,
            // and set their initial offsets depending on the startup mode.
            // for SPECIFIC_OFFSETS and TIMESTAMP modes, we set the specific offsets now;
            // for other modes (EARLIEST, LATEST, and GROUP_OFFSETS), the offset is lazily
            // determined
            // when the partition is actually read.
            switch (startupMode) {
                。。。
                default:
                    for (KafkaTopicPartition seedPartition : allPartitions) {
                        subscribedPartitionsToStartOffsets.put(
                                seedPartition, startupMode.getStateSentinel());
                    }
            }

            if (!subscribedPartitionsToStartOffsets.isEmpty()) {
                switch (startupMode) {
                    ...
                    case GROUP_OFFSETS:
                        LOG.info(
                                "Consumer subtask {} will start reading the following {} partitions from the committed group offsets in Kafka: {}",
                                getRuntimeContext().getIndexOfThisSubtask(),
                                subscribedPartitionsToStartOffsets.size(),
                                subscribedPartitionsToStartOffsets.keySet());
                }
            } else {
                LOG.info(
                        "Consumer subtask {} initially has no partitions to read from.",
                        getRuntimeContext().getIndexOfThisSubtask());
            }
        }

        this.deserializer.open(
                RuntimeContextInitializationContextAdapters.deserializationAdapter(
                        getRuntimeContext(), metricGroup -> metricGroup.addGroup("user")));
    }

    @Override
    public void run(SourceContext<T> sourceContext) throws Exception {
        if (subscribedPartitionsToStartOffsets == null) {
            throw new Exception("The partitions were not set for the consumer");
        }

        // initialize commit metrics and default offset callback method
        this.successfulCommits =
                this.getRuntimeContext()
                        .getMetricGroup()
                        .counter(COMMITS_SUCCEEDED_METRICS_COUNTER);
        this.failedCommits =
                this.getRuntimeContext().getMetricGroup().counter(COMMITS_FAILED_METRICS_COUNTER);
        final int subtaskIndex = this.getRuntimeContext().getIndexOfThisSubtask();

        this.offsetCommitCallback =
                new KafkaCommitCallback() {
                    @Override
                    public void onSuccess() {
                        successfulCommits.inc();
                    }

                    @Override
                    public void onException(Throwable cause) {
                        LOG.warn(
                                String.format(
                                        "Consumer subtask %d failed async Kafka commit.",
                                        subtaskIndex),
                                cause);
                        failedCommits.inc();
                    }
                };

        // mark the subtask as temporarily idle if there are no initial seed partitions;
        // once this subtask discovers some partitions and starts collecting records, the subtask's
        // status will automatically be triggered back to be active.
        if (subscribedPartitionsToStartOffsets.isEmpty()) {
            sourceContext.markAsTemporarilyIdle();
        }

        LOG.info(
                "Consumer subtask {} creating fetcher with offsets {}.",
                getRuntimeContext().getIndexOfThisSubtask(),
                subscribedPartitionsToStartOffsets);
        // from this point forward:
        //   - 'snapshotState' will draw offsets from the fetcher,
        //     instead of being built from `subscribedPartitionsToStartOffsets`
        //   - 'notifyCheckpointComplete' will start to do work (i.e. commit offsets to
        //     Kafka through the fetcher, if configured to do so)
        this.kafkaFetcher =
                createFetcher(
                        sourceContext,
                        subscribedPartitionsToStartOffsets,
                        watermarkStrategy,
                        (StreamingRuntimeContext) getRuntimeContext(),
                        offsetCommitMode,
                        getRuntimeContext().getMetricGroup().addGroup(KAFKA_CONSUMER_METRICS_GROUP),
                        useMetrics);

        if (!running) {
            return;
        }

        if (discoveryIntervalMillis == PARTITION_DISCOVERY_DISABLED) {
            kafkaFetcher.runFetchLoop();
        } else {
            runWithPartitionDiscovery();
        }
    }

    @Override
    public final void snapshotState(FunctionSnapshotContext context) throws Exception {
        ...
                HashMap<KafkaTopicPartition, Long> currentOffsets = fetcher.snapshotCurrentState();

                if (offsetCommitMode == OffsetCommitMode.ON_CHECKPOINTS) {
                    // the map cannot be asynchronously updated, because only one checkpoint call
                    // can happen
                    // on this function at a time: either snapshotState() or
                    // notifyCheckpointComplete()
                    pendingOffsetsToCommit.put(context.getCheckpointId(), currentOffsets);
                }

                for (Map.Entry<KafkaTopicPartition, Long> kafkaTopicPartitionLongEntry :
                        currentOffsets.entrySet()) {
                    unionOffsetStates.add(
                            Tuple2.of(
                                    kafkaTopicPartitionLongEntry.getKey(),
                                    kafkaTopicPartitionLongEntry.getValue()));
                }
          ... 
        }
    }

    @Override
    public final void notifyCheckpointComplete(long checkpointId) throws Exception {
            ...
            fetcher.commitInternalOffsetsToKafka(offsets, offsetCommitCallback);
            ...
    }

主要是initializeStateopen ,run ,snapshotState ,notifyCheckpointComplete 这四个方法,下面带着问题逐一介绍一下:
注意 :对于initializeStateopen 方法的先后顺序,可以参考StreamTask类,其中如下的调用链:

invoke()
 ||
 \/
beforeInvoke()
 ||
 \/
operatorChain.initializeStateAndOpenOperators
 ||
 \/
FlinkKafkaConsumerBase.initializeState
 ||
 \/
FlinkKafkaConsumerBase.open

就可以知道 initializeState 方法的调用是在open之前的

initializeState方法

这里做的事情就是从持久化的State中恢复kafkaTopicOffset信息,我们这里假设是第一次启动

open方法

  • offsetCommitMode
    offsetCommitMode = OffsetCommitModes.fromConfiguration 这里获取设置的kafka offset的提交模式,这里会综合enable.auto.commit的配置(默认是true ),enableCommitOnCheckpoints 默认是true,checkpointing设置为true(默认是false),综合以上得到的值为OffsetCommitMode.ON_CHECKPOINTS

  • partitionDiscoverer
    这里主要是进行kafka的topic的分区发现,主要路程是 partitionDiscoverer.discoverPartitions,这里的涉及的流程如下:

    AbstractPartitionDiscoverer.discoverPartitions
      ||
      \/
    AbstractPartitionDiscoverer.getAllPartitionsForTopics 
      ||
      \/
    KafkaPartitionDiscoverer.kafkaConsumer.partitionsFor
      ||
      \/
    KafkaConsumer.partitionsFor(topic, Duration.ofMillis(defaultApiTimeoutMs)) //这里的defaultApiTimeoutMs 来自于*default.api.timeout.ms*
      ||
      \/
    Fetcher.getTopicMetadata //这里面最后抛出 new TimeoutException("Timeout expired while fetching topic metadata");
      ||
      \/
    Fetcher.sendMetadataRequest => NetworkClient.leastLoadedNode //这里会随机选择配置的broker的节点
      ||
      \/
    client.poll(future, timer) => NetworkClient.poll => selector.poll(Utils.min(timeout, metadataTimeout, defaultRequestTimeoutMs)); // 这里的 *defaultRequestTimeoutMs* 来自配置*request.timeout.ms*
    

    综上所述,discoverPartitions 做的就是随机选择配置的broker节点,对每个节点进行请求,request.timeout.ms超时后,再随机选择broker,直至总的时间达到了配置的default.api.timeout.ms ,这里默认default.api.timeout.ms 为60秒,request.timeout.ms为30秒

  • subscribedPartitionsToStartOffsets
    根据startupMode模式,默认是StartupMode.GROUP_OFFSETS(默认从上次消费的offset开始消费),设置开启的kafka offset,这在kafkaFetcher中会用到

run方法

  • 设置一些指标successfulCommits /failedCommits

  • KafkaFetcher
    这里主要是从kafka获取数据以及如果有分区发现则循环进kafka的topic分区发现,这里会根据配置scan.topic-partition-discovery.interval 默认配置为0,实际中设置的为300000,即5分钟。该主要的流程为在方法runWithPartitionDiscovery :

      private void runWithPartitionDiscovery() throws Exception {
          final AtomicReference<Exception> discoveryLoopErrorRef = new AtomicReference<>();
          createAndStartDiscoveryLoop(discoveryLoopErrorRef);
    
          kafkaFetcher.runFetchLoop();
    
          // make sure that the partition discoverer is waked up so that
          // the discoveryLoopThread exits
          partitionDiscoverer.wakeup();
          joinDiscoveryLoopThread();
    
          // rethrow any fetcher errors
          final Exception discoveryLoopError = discoveryLoopErrorRef.get();
          if (discoveryLoopError != null) {
              throw new RuntimeException(discoveryLoopError);
          }
      }
    
    • createAndStartDiscoveryLoop 这个会启动单个线程以while sleep方式实现以scan.topic-partition-discovery.interval 为间隔来轮询进行Kafka的分区发现,注意这里会吞没Execption,并不会抛出异常

       private void createAndStartDiscoveryLoop(AtomicReference<Exception> discoveryLoopErrorRef) {
         discoveryLoopThread =
                 new Thread(
                         ...
                         while (running) {
                           ...
                                     try {
                                         discoveredPartitions =
                                                 partitionDiscoverer.discoverPartitions();
                                     } catch (AbstractPartitionDiscoverer.WakeupException
                                             | AbstractPartitionDiscoverer.ClosedException e) {
                                       
                                         break;
                                     }
                                     if (running && !discoveredPartitions.isEmpty()) {
                                         kafkaFetcher.addDiscoveredPartitions(discoveredPartitions);
                                     }
      
                                     if (running && discoveryIntervalMillis != 0) {
                                         try {
                                             Thread.sleep(discoveryIntervalMillis);
                                         } catch (InterruptedException iex) {
                                             break;
                                         }
                                     }
                                 }
                             } catch (Exception e) {
                                 discoveryLoopErrorRef.set(e);
                             } finally {
                                 // calling cancel will also let the fetcher loop escape
                                 // (if not running, cancel() was already called)
                                 if (running) {
                                     cancel();
                                 }
                             }
                         },
                         "Kafka Partition Discovery for "
                                 + getRuntimeContext().getTaskNameWithSubtasks());
      
         discoveryLoopThread.start();
      }
      

      这里的kafkaFetcher.addDiscoveredPartitions(discoveredPartitions);subscribedPartitionStates 变量会把发现分区信息保存起来,这在kafkaFetcher.runFetchLoop 中会设置已经提交的offset信息,并且会在snapshotState会用到

    • kafkaFetcher.runFetchLoop 这里会从kafka拉取数据,并设置kafka的offset,具体的流程如下:

       runFetchLoop 
          ||
          \/
        subscribedPartitionStates 这里会获取*subscribedPartitionStates*变量
          ||
          \/
        partitionConsumerRecordsHandler
          ||
          \/
        emitRecordsWithTimestamps
          ||
          \/
        emitRecordsWithTimestamps
          ||
          \/
        partitionState.setOffset(offset);
      

      这里的offset就是从消费的kafka记录中获取的

snapshotState方法

这里会对subscribedPartitionStates 中的信息进行处理,主要是加到pendingOffsetsToCommit变量中

  • offsetCommitMode
    这里上面说到是OffsetCommitMode.ON_CHECKPOINTS ,如果是ON_CHECKPOINTS ,则会从fetcher.snapshotCurrentState 获取subscribedPartitionStates
    并加到pendingOffsetsToCommit,并持久化到unionOffsetStates 中,这实际的kafka offset commit操作在notifyCheckpointComplete中,

notifyCheckpointComplete方法

获取到要提交的kafka offset信息,并持久化保存kafka中

参考

相关推荐
Acrelhuang3 分钟前
安科瑞5G基站直流叠光监控系统-安科瑞黄安南
大数据·数据库·数据仓库·物联网
皓74112 分钟前
服饰电商行业知识管理的创新实践与知识中台的重要性
大数据·人工智能·科技·数据分析·零售
Mephisto.java14 分钟前
【大数据学习 | kafka高级部分】kafka的kraft集群
大数据·sql·oracle·kafka·json·hbase
Mephisto.java16 分钟前
【大数据学习 | kafka高级部分】kafka的文件存储原理
大数据·sql·oracle·kafka·json
yx9o1 小时前
Kafka 源码 KRaft 模式本地运行
分布式·kafka
W Y1 小时前
【架构-37】Spark和Flink
架构·flink·spark
ycsdn101 小时前
Caused by: org.apache.flink.api.common.io.ParseException: Row too short:
大数据·flink
DolphinScheduler社区2 小时前
Apache DolphinScheduler + OceanBase,搭建分布式大数据调度平台的实践
大数据
时差9533 小时前
MapReduce 的 Shuffle 过程
大数据·mapreduce
kakwooi4 小时前
Hadoop---MapReduce(3)
大数据·hadoop·mapreduce