8.Covector Transformation Rules

上一节已知,任意的协向量都可以写成对偶基向量的线性组合,以及如何通过计算基向量穿过的协向量线来获得协向量分量,且看到 协向量分量 以 与向量分量 相反的方式进行变换。

现要在数学上确认协向量变换规则是什么。

第一件事:弄清协向量本身是怎么转换的,

使用向量以便从旧基中获取新基,用旧基构建新基,这就是前向变换,

现对协向量也同样如此,

这里的Q是多少呢???

为计算出Q,

首先将与e1进行相乘, 即 该方程的左右两边同时右乘e1,

得到:

, 故有:

类似的,

于是得到:

鉴于此,进行 后向转换。 以便可根据新的基向量写出旧的基向量。

把 这两个方程 代入到上面 那个方程。

于是我们就能得到,如何通过旧的对偶基向量, 表达新的对偶基向量,

同样的道理,可以通过该方式,计算得到:

对比系数:

这意味着,从旧的对偶基向量 到 新的对偶基向量,可以使用 后向转换。

接下来,尝试证明对于所有维度:

前提设置:

双基的定义:

前向转换 和 后向转换(Forward、 Backward):

​​​​​​​ ​​​​​​​ ​​​​​​​

另外,前向转换和后向转换是互逆的: ​​​​​​​

​​​​​​​ ​​​​​​​ ​​​​​​​

开始

当 j ≠ l 时,, 故可以用代替,

理解:中的l全部代入, 当 j ≠ l 时,,仅,1省略不写,
变为,再结束l这个求和项。

得到的最后一个式子,最后一个式子的左边就是一个单位阵E,即右边两个东西互逆,而F与B又是互逆的,等量代换,。

所以,就是使用反向转换(Backward)使得 从旧对偶基 到 新对偶基。

现在,就可以明白为什么视频的老师 把协向量的索引 写在顶部, 因为它们的变换与基向量的方式相反。

基向量 和 协向量 的变换规则 总结:

现已知 基向量的转换方式, 想弄清它们的分量如何转换就比较容易,

将某一协向量α写成 旧基协向量的线性组合,

将最后一个等式 与 上面那个线性组合进行比较,

同样地,

注意,是以向量那个为本,其他的转换方式都与向量的来进行比较, 反就弄上标,同就下标。

Contravariant---逆变的,反变的。

Covariant 协变的,共变式。

相关推荐
Joy T22 分钟前
海南蓝碳:生态财富与科技驱动的新未来
大数据·人工智能·红树林·海南省·生态区建设
N0nename1 小时前
TR3--Transformer之pytorch复现
人工智能·pytorch·python
北京耐用通信1 小时前
电力自动化新突破:Modbus如何变身Profinet?智能仪表连接的终极解决方案
人工智能·物联网·网络安全·自动化·信息与通信
golang学习记2 小时前
VSCode Copilot 编码智能体实战指南:让 AI 自主开发,你只负责 Review!
人工智能
渡我白衣2 小时前
深度学习进阶(八)——AI 操作系统的雏形:AgentOS、Devin 与多智能体协作
人工智能·深度学习
YY_TJJ2 小时前
算法题——贪心算法
算法·贪心算法
C++ 老炮儿的技术栈2 小时前
include″″与includ<>的区别
c语言·开发语言·c++·算法·visual studio
万岳软件开发小城2 小时前
AI数字人系统源码+AI数字人小程序开发:2025年热门AI项目
人工智能·开源·软件开发·app开发·ai数字人小程序·ai数字人系统源码
CLubiy2 小时前
【研究生随笔】Pytorch中的线性代数
pytorch·python·深度学习·线性代数·机器学习
xiangzhihong82 小时前
Spring Boot集成SSE实现AI对话的流式响应
人工智能·spring boot