8.Covector Transformation Rules

上一节已知,任意的协向量都可以写成对偶基向量的线性组合,以及如何通过计算基向量穿过的协向量线来获得协向量分量,且看到 协向量分量 以 与向量分量 相反的方式进行变换。

现要在数学上确认协向量变换规则是什么。

第一件事:弄清协向量本身是怎么转换的,

使用向量以便从旧基中获取新基,用旧基构建新基,这就是前向变换,

现对协向量也同样如此,

这里的Q是多少呢???

为计算出Q,

首先将与e1进行相乘, 即 该方程的左右两边同时右乘e1,

得到:

, 故有:

类似的,

于是得到:

鉴于此,进行 后向转换。 以便可根据新的基向量写出旧的基向量。

把 这两个方程 代入到上面 那个方程。

于是我们就能得到,如何通过旧的对偶基向量, 表达新的对偶基向量,

同样的道理,可以通过该方式,计算得到:

对比系数:

这意味着,从旧的对偶基向量 到 新的对偶基向量,可以使用 后向转换。

接下来,尝试证明对于所有维度:

前提设置:

双基的定义:

前向转换 和 后向转换(Forward、 Backward):

​​​​​​​ ​​​​​​​ ​​​​​​​

另外,前向转换和后向转换是互逆的: ​​​​​​​

​​​​​​​ ​​​​​​​ ​​​​​​​

开始

当 j ≠ l 时,, 故可以用代替,

理解:中的l全部代入, 当 j ≠ l 时,,仅,1省略不写,
变为,再结束l这个求和项。

得到的最后一个式子,最后一个式子的左边就是一个单位阵E,即右边两个东西互逆,而F与B又是互逆的,等量代换,。

所以,就是使用反向转换(Backward)使得 从旧对偶基 到 新对偶基。

现在,就可以明白为什么视频的老师 把协向量的索引 写在顶部, 因为它们的变换与基向量的方式相反。

基向量 和 协向量 的变换规则 总结:

现已知 基向量的转换方式, 想弄清它们的分量如何转换就比较容易,

将某一协向量α写成 旧基协向量的线性组合,

将最后一个等式 与 上面那个线性组合进行比较,

同样地,

注意,是以向量那个为本,其他的转换方式都与向量的来进行比较, 反就弄上标,同就下标。

Contravariant---逆变的,反变的。

Covariant 协变的,共变式。

相关推荐
2501_93614604几秒前
目标检测论文解读复现之六基于RetinaNet的考拉检测方法
人工智能·目标检测·计算机视觉
zm-v-159304339861 分钟前
最新AI-Python自然科学领域机器学习与深度学习技术
人工智能·python·机器学习
一颗青果5 分钟前
auto | 尾置返回类型 | decltype | using | typedef
java·开发语言·算法
郝学胜-神的一滴13 分钟前
何友院士《人工智能发展前沿》全景解读:从理论基石到产业变革
人工智能·python·深度学习·算法·机器学习
2401_8403652117 分钟前
cuda-gdb Could not find CUDA Debugger back-end.
人工智能
BHXDML23 分钟前
第五章:支持向量机
算法·机器学习·支持向量机
苍何fly26 分钟前
首个国产芯片训练的多模态 SOTA 模型,已免费开源!
人工智能·经验分享
2401_8414956427 分钟前
具身智能:从理论到现实,人工智能的下一场革命
人工智能·算法·机器人·硬件·具身智能·通用智能·专用智能
Felven33 分钟前
B. MEXor Mixup
算法
方见华Richard39 分钟前
对话量子场论:语言如何产生认知粒子V0.3
人工智能·交互·学习方法·原型模式·空间计算