《PyTorch深度学习实践》第二讲 线性模型 课后练习

《PyTorch深度学习实践》第二讲 线性模型 课后练习

问题描述

代码实现

python 复制代码
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

# 假设函数为 y = 2x + 1
x_data = [1.0, 2.0, 3.0]
y_data = [3.0, 5.0, 7.0]

# 定义模型
def forward(x):
    return x * w + b

# 定义损失函数
def loss(x, y):
    y_pred = forward(x)
    return (y_pred - y) * (y_pred - y)

# mes 平方误差
mes_list = []
# w, b权重
W = np.arange(0.0, 3.1, 0.1)
B = np.arange(0.0, 3.1, 0.1)
# 画3D曲面图时,传入的参数必须是数据值或二维矩阵
# 利用meshgrid函数讲w,b两列数据转化为二维矩阵
[w, b] = np.meshgrid(W, B)

l_sum = 0
for x_val, y_val in zip(x_data, y_data):
    y_pred_val = forward(x_val) # 预测值
    print(y_pred_val)
    loss_val = loss(x_val, y_val) # 计算损失
    l_sum += loss_val

# 绘3D图展示
fig = plt.figure()
ax =fig.add_axes(Axes3D(fig))
ax.plot_surface(w, b, l_sum/3)
plt.show()

实现效果

相关推荐
白日做梦Q12 分钟前
深度学习模型评估指标深度解析:不止于准确率的科研量化方法
人工智能·深度学习
Yyyyy123jsjs15 分钟前
外汇Tick数据交易时段详解与Python实战分析
人工智能·python·区块链
张彦峰ZYF28 分钟前
提示词工程实战指南:从概念认知到可验证的高质量 Prompt 设计
人工智能·提示词工程实战指南·高质量 prompt 设计
哥布林学者1 小时前
吴恩达深度学习课程四:计算机视觉 第四周:卷积网络应用 (二) 图像风格转换
深度学习·ai
不易思不逸1 小时前
SAM2 测试
人工智能·python
BOF_dcb2 小时前
【无标题】
pytorch·深度学习·机器学习
V1ncent_xuan2 小时前
坐标转化Halcon&Opencv
人工智能·opencv·计算机视觉
咚咚王者2 小时前
人工智能之核心基础 机器学习 第一章 基础概述
人工智能·机器学习
StarChainTech2 小时前
电动车租赁中的智能管理:电子围栏技术如何改变出行行业
大数据·人工智能·微信小程序·小程序·团队开发·软件需求·共享经济