《PyTorch深度学习实践》第二讲 线性模型 课后练习

《PyTorch深度学习实践》第二讲 线性模型 课后练习

问题描述

代码实现

python 复制代码
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

# 假设函数为 y = 2x + 1
x_data = [1.0, 2.0, 3.0]
y_data = [3.0, 5.0, 7.0]

# 定义模型
def forward(x):
    return x * w + b

# 定义损失函数
def loss(x, y):
    y_pred = forward(x)
    return (y_pred - y) * (y_pred - y)

# mes 平方误差
mes_list = []
# w, b权重
W = np.arange(0.0, 3.1, 0.1)
B = np.arange(0.0, 3.1, 0.1)
# 画3D曲面图时,传入的参数必须是数据值或二维矩阵
# 利用meshgrid函数讲w,b两列数据转化为二维矩阵
[w, b] = np.meshgrid(W, B)

l_sum = 0
for x_val, y_val in zip(x_data, y_data):
    y_pred_val = forward(x_val) # 预测值
    print(y_pred_val)
    loss_val = loss(x_val, y_val) # 计算损失
    l_sum += loss_val

# 绘3D图展示
fig = plt.figure()
ax =fig.add_axes(Axes3D(fig))
ax.plot_surface(w, b, l_sum/3)
plt.show()

实现效果

相关推荐
汽车仪器仪表相关领域1 分钟前
MTX-A 模拟废气温度(EGT)计 核心特性与车载实操指南
网络·人工智能·功能测试·单元测试·汽车·可用性测试
GeeLark7 分钟前
#请输入你的标签内容
大数据·人工智能·自动化
番茄大王sc8 分钟前
2026年科研AI工具深度测评:文献调研与综述生成领域
论文阅读·人工智能·学习方法·论文笔记
让学习成为一种生活方式10 分钟前
酿酒葡萄VvOMTs基因家族鉴定及启动子功能分析--文献精读201
人工智能
运维小欣15 分钟前
博睿数据:以Agentic AI驱动智能运维未来
运维·人工智能
康康的AI博客36 分钟前
AI大模型API中转站全方位解析
人工智能
深圳博众测控1 小时前
博众测控 | ISO 16750-2:2023汽车电气测试新标准解读:关键变化与测试设备选型
人工智能·测试工具·汽车
Dfreedom.1 小时前
图像灰度处理与二值化
图像处理·人工智能·opencv·计算机视觉
老兵发新帖1 小时前
关于ONNX和pytorch,我们应该怎么做?结合训练和推理
人工智能
方安乐1 小时前
杂记:对齐研究(AI alignment)
人工智能