《PyTorch深度学习实践》第二讲 线性模型 课后练习

《PyTorch深度学习实践》第二讲 线性模型 课后练习

问题描述

代码实现

python 复制代码
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

# 假设函数为 y = 2x + 1
x_data = [1.0, 2.0, 3.0]
y_data = [3.0, 5.0, 7.0]

# 定义模型
def forward(x):
    return x * w + b

# 定义损失函数
def loss(x, y):
    y_pred = forward(x)
    return (y_pred - y) * (y_pred - y)

# mes 平方误差
mes_list = []
# w, b权重
W = np.arange(0.0, 3.1, 0.1)
B = np.arange(0.0, 3.1, 0.1)
# 画3D曲面图时,传入的参数必须是数据值或二维矩阵
# 利用meshgrid函数讲w,b两列数据转化为二维矩阵
[w, b] = np.meshgrid(W, B)

l_sum = 0
for x_val, y_val in zip(x_data, y_data):
    y_pred_val = forward(x_val) # 预测值
    print(y_pred_val)
    loss_val = loss(x_val, y_val) # 计算损失
    l_sum += loss_val

# 绘3D图展示
fig = plt.figure()
ax =fig.add_axes(Axes3D(fig))
ax.plot_surface(w, b, l_sum/3)
plt.show()

实现效果

相关推荐
ai产品老杨2 分钟前
企业级AI视频管理平台,内置算法商城,集群管理、标注平台开源了
人工智能·开源·音视频
边缘计算社区4 分钟前
谁将主导AI边缘战场?2026中国边缘计算20强榜单征选启动
人工智能·边缘计算
OpenBayes8 分钟前
Nemotron Speech ASR低延迟英文实时转写的语音识别服务;GLM-Image开源混合自回归与扩散解码架构的图像生成模型
人工智能·深度学习·机器学习·架构·数据集·语音识别·图像编辑
啊阿狸不会拉杆8 分钟前
《机器学习》第 7 章 - 神经网络与深度学习
人工智能·python·深度学习·神经网络·机器学习·ai·ml
星爷AG I9 分钟前
9-8 客体构型(AGI基础理论)
人工智能·agi
虹科网络安全9 分钟前
艾体宝洞察 | 理解生成式人工智能中的偏见:类型、原因和后果
人工智能
星爷AG I10 分钟前
9-7 轮廓感知(AGI基础理论)
人工智能·agi
乌恩大侠12 分钟前
【AI-RAN 调研】软银株式会社通过全新 Transformer AI 将 5G AI-RAN 吞吐量提升 30%
人工智能·深度学习·5g·fpga开发·transformer·usrp·mimo
智源研究院官方账号15 分钟前
技术详解 | 众智FlagOS1.6:一套系统,打通多框架与多芯片上下适配
人工智能·驱动开发·后端·架构·硬件架构·硬件工程·harmonyos
yuezhilangniao15 分钟前
ai开发 名词解释-概念理解-LLMs(大语言模型)Chat Models(聊天模型)Embeddings Models(嵌入模型).
人工智能·语言模型·自然语言处理