《PyTorch深度学习实践》第二讲 线性模型 课后练习

《PyTorch深度学习实践》第二讲 线性模型 课后练习

问题描述

代码实现

python 复制代码
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

# 假设函数为 y = 2x + 1
x_data = [1.0, 2.0, 3.0]
y_data = [3.0, 5.0, 7.0]

# 定义模型
def forward(x):
    return x * w + b

# 定义损失函数
def loss(x, y):
    y_pred = forward(x)
    return (y_pred - y) * (y_pred - y)

# mes 平方误差
mes_list = []
# w, b权重
W = np.arange(0.0, 3.1, 0.1)
B = np.arange(0.0, 3.1, 0.1)
# 画3D曲面图时,传入的参数必须是数据值或二维矩阵
# 利用meshgrid函数讲w,b两列数据转化为二维矩阵
[w, b] = np.meshgrid(W, B)

l_sum = 0
for x_val, y_val in zip(x_data, y_data):
    y_pred_val = forward(x_val) # 预测值
    print(y_pred_val)
    loss_val = loss(x_val, y_val) # 计算损失
    l_sum += loss_val

# 绘3D图展示
fig = plt.figure()
ax =fig.add_axes(Axes3D(fig))
ax.plot_surface(w, b, l_sum/3)
plt.show()

实现效果

相关推荐
deng120415 分钟前
基于LeNet-5的图像分类小结
人工智能·分类·数据挖掘
OpenAnolis小助手34 分钟前
直播预告:LLM for AIOPS,是泡沫还是银弹? |《AI 进化论》第六期
人工智能
我一身正气怎能输42 分钟前
游戏大厂A*寻路优化秘籍:流畅不卡顿
人工智能·游戏
johnny2332 小时前
AI工作流编排平台
人工智能
百***35482 小时前
DeepSeek在情感分析中的细粒度识别
人工智能
Qzkj6663 小时前
从规则到智能:企业数据分类分级的先进实践与自动化转型
大数据·人工智能·自动化
weixin79893765432...3 小时前
React + Fastify + DeepSeek 实现一个简单的对话式 AI 应用
人工智能·react.js·fastify
大千AI助手3 小时前
概率单位回归(Probit Regression)详解
人工智能·机器学习·数据挖掘·回归·大千ai助手·概率单位回归·probit回归
adjusttraining3 小时前
毁掉孩子视力不是电视和手机,两个隐藏很深因素,很多家长并不知
深度学习·其他
狂炫冰美式4 小时前
3天,1人,从0到付费产品:AI时代个人开发者的生存指南
前端·人工智能·后端