《PyTorch深度学习实践》第二讲 线性模型 课后练习

《PyTorch深度学习实践》第二讲 线性模型 课后练习

问题描述

代码实现

python 复制代码
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

# 假设函数为 y = 2x + 1
x_data = [1.0, 2.0, 3.0]
y_data = [3.0, 5.0, 7.0]

# 定义模型
def forward(x):
    return x * w + b

# 定义损失函数
def loss(x, y):
    y_pred = forward(x)
    return (y_pred - y) * (y_pred - y)

# mes 平方误差
mes_list = []
# w, b权重
W = np.arange(0.0, 3.1, 0.1)
B = np.arange(0.0, 3.1, 0.1)
# 画3D曲面图时,传入的参数必须是数据值或二维矩阵
# 利用meshgrid函数讲w,b两列数据转化为二维矩阵
[w, b] = np.meshgrid(W, B)

l_sum = 0
for x_val, y_val in zip(x_data, y_data):
    y_pred_val = forward(x_val) # 预测值
    print(y_pred_val)
    loss_val = loss(x_val, y_val) # 计算损失
    l_sum += loss_val

# 绘3D图展示
fig = plt.figure()
ax =fig.add_axes(Axes3D(fig))
ax.plot_surface(w, b, l_sum/3)
plt.show()

实现效果

相关推荐
跳跳糖炒酸奶14 分钟前
第四章、Isaacsim在GUI中构建机器人(1): 添加简单对象
人工智能·python·ubuntu·机器人
猿饵块20 分钟前
机器人--ros2--IMU
人工智能
硅谷秋水20 分钟前
MoLe-VLA:通过混合层实现的动态跳层视觉-语言-动作模型实现高效机器人操作
人工智能·深度学习·机器学习·计算机视觉·语言模型·机器人
LS_learner22 分钟前
小智机器人关键函数解析,Application::OutputAudio()处理音频数据的输出的函数
人工智能·嵌入式硬件
2301_7644413337 分钟前
基于神经网络的肾脏疾病预测模型
人工智能·深度学习·神经网络
iiimZoey42 分钟前
配置晟腾910b的PyTorch torch_npu环境
pytorch
子燕若水44 分钟前
用gpt-4o 生成图的教程和常用提示词
人工智能
weixin_442424031 小时前
Opencv计算机视觉编程攻略-第七节 提取直线、轮廓和区域
人工智能·opencv·计算机视觉
x-cmd1 小时前
[250401] OpenAI 向免费用户开放 GPT-4o 图像生成功能 | Neovim 0.11 新特性解读
人工智能·gpt·文生图·openai·命令行·neovim
HABuo1 小时前
【YOLOv8】YOLOv8改进系列(12)----替换主干网络之StarNet
人工智能·深度学习·yolo·目标检测·计算机视觉