《PyTorch深度学习实践》第二讲 线性模型 课后练习

《PyTorch深度学习实践》第二讲 线性模型 课后练习

问题描述

代码实现

python 复制代码
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

# 假设函数为 y = 2x + 1
x_data = [1.0, 2.0, 3.0]
y_data = [3.0, 5.0, 7.0]

# 定义模型
def forward(x):
    return x * w + b

# 定义损失函数
def loss(x, y):
    y_pred = forward(x)
    return (y_pred - y) * (y_pred - y)

# mes 平方误差
mes_list = []
# w, b权重
W = np.arange(0.0, 3.1, 0.1)
B = np.arange(0.0, 3.1, 0.1)
# 画3D曲面图时,传入的参数必须是数据值或二维矩阵
# 利用meshgrid函数讲w,b两列数据转化为二维矩阵
[w, b] = np.meshgrid(W, B)

l_sum = 0
for x_val, y_val in zip(x_data, y_data):
    y_pred_val = forward(x_val) # 预测值
    print(y_pred_val)
    loss_val = loss(x_val, y_val) # 计算损失
    l_sum += loss_val

# 绘3D图展示
fig = plt.figure()
ax =fig.add_axes(Axes3D(fig))
ax.plot_surface(w, b, l_sum/3)
plt.show()

实现效果

相关推荐
Lethehong11 分钟前
昇腾Atlas 800T平台下Qwen-14B大语言模型的SGLang适配与性能实测
人工智能·语言模型·sglang·昇腾npu
杜子不疼.13 分钟前
Spring AI 与向量数据库:构建企业级 RAG 智能问答系统
数据库·人工智能·spring
ayingmeizi16315 分钟前
AI CRM赋能全链路数字化如何重塑医械企业渠道竞争力?
人工智能
————A16 分钟前
从 RAG 召回失败到故障链推理
人工智能·rag
Chase_______1 小时前
AI提效指南:Nano Banana 生成精美PPT与漫画
人工智能·powerpoint
雨大王5121 小时前
汽车产业供应链优化的可行策略及案例分析
人工智能·机器学习
梁辰兴1 小时前
三星自研GPU剑指AI芯片霸权,2027年能否撼动英伟达?
人工智能·gpu·芯片·电子·ai芯片·三星·梁辰兴
吴佳浩8 小时前
Python入门指南(七) - YOLO检测API进阶实战
人工智能·后端·python
tap.AI8 小时前
RAG系列(二)数据准备与向量索引
开发语言·人工智能
老蒋新思维9 小时前
知识IP的长期主义:当AI成为跨越增长曲线的“第二曲线引擎”|创客匠人
大数据·人工智能·tcp/ip·机器学习·创始人ip·创客匠人·知识变现