《PyTorch深度学习实践》第二讲 线性模型 课后练习

《PyTorch深度学习实践》第二讲 线性模型 课后练习

问题描述

代码实现

python 复制代码
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

# 假设函数为 y = 2x + 1
x_data = [1.0, 2.0, 3.0]
y_data = [3.0, 5.0, 7.0]

# 定义模型
def forward(x):
    return x * w + b

# 定义损失函数
def loss(x, y):
    y_pred = forward(x)
    return (y_pred - y) * (y_pred - y)

# mes 平方误差
mes_list = []
# w, b权重
W = np.arange(0.0, 3.1, 0.1)
B = np.arange(0.0, 3.1, 0.1)
# 画3D曲面图时,传入的参数必须是数据值或二维矩阵
# 利用meshgrid函数讲w,b两列数据转化为二维矩阵
[w, b] = np.meshgrid(W, B)

l_sum = 0
for x_val, y_val in zip(x_data, y_data):
    y_pred_val = forward(x_val) # 预测值
    print(y_pred_val)
    loss_val = loss(x_val, y_val) # 计算损失
    l_sum += loss_val

# 绘3D图展示
fig = plt.figure()
ax =fig.add_axes(Axes3D(fig))
ax.plot_surface(w, b, l_sum/3)
plt.show()

实现效果

相关推荐
青春不朽5122 分钟前
PyTorch 入门指南:深度学习的瑞士军刀
人工智能·pytorch·深度学习
区块链蓝海2 分钟前
Ardor v2.6.0 正式发布:Nxt迁移完成,Ardor迈入多链协同新阶段
人工智能·区块链
403240734 分钟前
【Jetson开发避坑】虚拟环境(Conda/Venv)调用系统底层OpenCV与TensorRT的终极指南
人工智能·opencv·conda
JMchen1237 分钟前
AI编程范式转移:深度解析人机协同编码的实战进阶与未来架构
人工智能·经验分享·python·深度学习·架构·pycharm·ai编程
esmap7 分钟前
OpenClaw与ESMAP AOA定位系统融合技术分析
前端·人工智能·计算机视觉·3d·ai·js
jl48638218 分钟前
【选型指南】气密性检测仪显示屏如何兼顾IP65防护、-40℃~85℃宽温与快速交付?
大数据·人工智能·stm32·单片机·物联网
纤纡.10 分钟前
深度学习入门:从神经网络到实战核心,一篇讲透
人工智能·深度学习·神经网络
珠海西格电力10 分钟前
零碳园区实现能源优化的具体措施解析
大数据·人工智能·物联网·智慧城市·能源
我和我导针锋相队15 分钟前
国自然5页纸装下“多机制复杂问题”:用“主线+支线”逻辑,把乱麻理成渔网
大数据·人工智能·机器学习
jiang_changsheng18 分钟前
工作流agent汇总分析 2
java·人工智能·git·python·机器学习·github·语音识别