基于深度优先搜索的图遍历

这里写目录标题

基于深度优先搜索的无向图遍历

使用深度优先搜索遍历无向图,将无向图用邻接表存储:

算法流程图

  1. 初始化起点 source ,当前节点v 为起点,终点 target ,路径path 为空,路径集合 paths 为空
  2. 将当前节点v 添加到 path
  3. 判断当前节点v是否为终点,是转step4,否转step5
  4. 保存 pathpaths 中,转step7
  5. 获取当前节点的所有邻接点,用集合N表示
  6. 遍历N ,若 N_i 不在 path 中,令v =N_i ,转step2;若N_ipath 中,i +=1。
  7. 删除 path 中最后一个节点,令v =path中最后一个节点,转step5
  8. 以上步骤遍历了所有每一个点的邻接点,算法结束,输出起点到终点的所有路径paths

Python实现

python 复制代码
from typing import List


def dfs(adjacent_list, source, target):
    """
    :param adjacent_list: 邻接表
    :param source: 起点
    :param target: 终点
    :return: 起点-终点的所有路径
    """

    def dfs_helper(adjacent_list, source, current_node, target):

        path.append(current_node)  # 压栈
        if current_node == target:
            paths.append(path.copy())
        else:
            neighbors = adjacent_list[current_node]
            for neighbor in neighbors:
                if neighbor not in path:
                    dfs_helper(adjacent_list, source, neighbor, target)
        path.pop()  # 弹栈

    paths = []
    path = []
    dfs_helper(adjacent_list, source, source, target)
    return paths


if __name__ == "__main__":
    # 邻接表
    adjacent_list = {
        1: [2, 3],
        2: [1, 4, 5],
        3: [1, 4, 7],
        4: [2, 3, 5, 6, 7],
        5: [2, 4, 6],
        6: [4, 5],
        7: [3, 4]
    }
    # 深搜
    paths: List[List] = dfs(adjacent_list, 1, 6)

    [print(path) for path in paths]

Java实现

java 复制代码
package org.example;

import java.util.*;

public class DepthFirstSearch {
    //    List<Integer> path = new ArrayList<>();
    Stack<Integer> path = new Stack<>();
    List<List<Integer>> paths = new ArrayList<>();

    void dfs(Map<Integer, List<Integer>> adjacent_list, int source, int current_node, int target) {
        path.push(current_node);
        if (current_node == target) {
            paths.add(new ArrayList<>(path));
            path.remove(path.size() - 1);
        } else {
            List<Integer> neighbors = adjacent_list.get(current_node);
            for (Integer neighbor : neighbors) {
                if (!path.contains(neighbor)) {
                    dfs(adjacent_list, source, neighbor, target);
                }
            }
            path.pop();
        }
    }

    public static void main(String[] args) {
        Map<Integer, List<Integer>> adjacent_list = new HashMap<>();
        adjacent_list.put(1, Arrays.asList(2, 3));
        adjacent_list.put(2, Arrays.asList(1, 4, 5));
        adjacent_list.put(3, Arrays.asList(1, 4, 7));
        adjacent_list.put(4, Arrays.asList(2, 3, 5, 6, 7));
        adjacent_list.put(5, Arrays.asList(2, 4, 6));
        adjacent_list.put(6, Arrays.asList(4, 5));
        adjacent_list.put(7, Arrays.asList(3, 4));
        System.out.println(adjacent_list);

        DepthFirstSearch dfs = new DepthFirstSearch();
        dfs.dfs(adjacent_list, 1, 1, 6);
        for (List<Integer> path : dfs.paths) {
            System.out.println(path);
        }

    }
}

基于深度优先搜索的有向图遍历

和无向图遍历一样,建立邻接矩阵即可。

Python实现

python 复制代码
from typing import List, Tuple, Any, Dict
import networkx
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from typing import List


def paint_topological_graph(nodes,
                            edges: List[Tuple],
                            coordinates: Dict[Any, Tuple] = None,
                            directed=False
                            ):
    print(nodes)
    print(edges)
    print(coordinates)

    graph = networkx.DiGraph() if directed else networkx.Graph()  # 全连通 有向图
    graph.add_nodes_from(nodes)
    graph.add_edges_from(edges)
    networkx.draw(graph, pos=coordinates, with_labels=True, node_color='red', )

    plt.show()
    print(networkx.has_path(graph, 1, 12))
    return graph


def dfs(adjacent_list, source, target):
    """
    :param adjacent_list: 邻接表
    :param source: 起点
    :param target: 终点
    :return: 起点-终点的所有路径
    """

    def dfs_helper(adjacent_list, source, current_node, target):

        path.append(current_node)
        if current_node == target:
            paths.append(path.copy())
            path.pop()
        else:
            neighbors = adjacent_list[current_node]
            for neighbor in neighbors:
                if neighbor not in path:
                    dfs_helper(adjacent_list, source, neighbor, target)
            path.pop()

    paths = []
    path = []
    dfs_helper(adjacent_list, source, source, target)
    return paths


if __name__ == "__main__":
    # 点坐标
    node_coord = {
        1: (1, 0), 2: (1, 3), 3: (2.5, 3), 4: (2, 2.5), 5: (3, 2), 6: (2, 1.5), 7: (3, 0), 8: (6, 0), 9: (5.5, 2),
        10: (5.5, 3), 11: (6, 4), 12: (0, 0), 13: (0, 1), 14: (5.5, 0.5), 15: (4.5, 0.5), 16: (5, 5),
    }

    edges = [
        (13, 12), (1, 2), (2, 4), (2, 3), (4, 3), (4, 5), (1, 6), (1, 7), (6, 7), (6, 5), (7, 8), (5, 9), (5, 10),
        (3, 11), (11, 10), (9, 8), (10, 9), (8, 11), (14, 15), (8, 14), (12, 1), (11, 16),
    ]

    # 画图
    paint_topological_graph(nodes=np.arange(1, 17, 1),
                            edges=edges,
                            directed=True,
                            coordinates=node_coord
                            )
    # 邻接表
    adjacent_list = {
        1: [2, 6, 7],
        2: [3, 4],
        3: [11],
        4: [3, 5],
        5: [9, 10],
        6: [5, 7],
        7: [8],
        8: [11, 14],
        9: [8],
        10: [9],
        11: [10, 16],
        12: [1],
        13: [12],
        14: [15],
        15: [],
        16: [],
    }
    # 深搜
    paths: List[List] = dfs(adjacent_list, 1, 11)

    [print(path) for path in paths]
相关推荐
之歆19 分钟前
Python-正则表达式-信息提取-滑动窗口-数据分发-文件加载及分析器-浏览器分析-学习笔记
python·学习·正则表达式
往日情怀酿做酒 V176392963823 分钟前
pytorch的介绍以及张量的创建
人工智能·pytorch·python
体系结构论文研讨会27 分钟前
多项式环及Rq的含义
算法
智驱力人工智能35 分钟前
极端高温下的智慧出行:危险检测与救援
人工智能·算法·安全·行为识别·智能巡航·高温预警·高温监测
森焱森44 分钟前
60 美元玩转 Li-Fi —— 开源 OpenVLC 平台入门(附 BeagleBone Black 驱动简单解析)
c语言·单片机·算法·架构·开源
yngsqq44 分钟前
netdxf—— CAD c#二次开发之(netDxf 处理 DXF 文件)
java·前端·c#
A了LONE1 小时前
h5的底部导航栏模板
java·前端·javascript
豌豆花下猫1 小时前
Python 潮流周刊#110:JIT 编译器两年回顾,AI 智能体工具大爆发(摘要)
后端·python·ai
经典19921 小时前
spring boot 详解以及原理
java·spring boot·后端
星光54221 小时前
飞算JavaAI:给Java开发装上“智能引擎”的超级助手
java·开发语言