基于深度优先搜索的图遍历

这里写目录标题

基于深度优先搜索的无向图遍历

使用深度优先搜索遍历无向图,将无向图用邻接表存储:

算法流程图

  1. 初始化起点 source ,当前节点v 为起点,终点 target ,路径path 为空,路径集合 paths 为空
  2. 将当前节点v 添加到 path
  3. 判断当前节点v是否为终点,是转step4,否转step5
  4. 保存 pathpaths 中,转step7
  5. 获取当前节点的所有邻接点,用集合N表示
  6. 遍历N ,若 N_i 不在 path 中,令v =N_i ,转step2;若N_ipath 中,i +=1。
  7. 删除 path 中最后一个节点,令v =path中最后一个节点,转step5
  8. 以上步骤遍历了所有每一个点的邻接点,算法结束,输出起点到终点的所有路径paths

Python实现

python 复制代码
from typing import List


def dfs(adjacent_list, source, target):
    """
    :param adjacent_list: 邻接表
    :param source: 起点
    :param target: 终点
    :return: 起点-终点的所有路径
    """

    def dfs_helper(adjacent_list, source, current_node, target):

        path.append(current_node)  # 压栈
        if current_node == target:
            paths.append(path.copy())
        else:
            neighbors = adjacent_list[current_node]
            for neighbor in neighbors:
                if neighbor not in path:
                    dfs_helper(adjacent_list, source, neighbor, target)
        path.pop()  # 弹栈

    paths = []
    path = []
    dfs_helper(adjacent_list, source, source, target)
    return paths


if __name__ == "__main__":
    # 邻接表
    adjacent_list = {
        1: [2, 3],
        2: [1, 4, 5],
        3: [1, 4, 7],
        4: [2, 3, 5, 6, 7],
        5: [2, 4, 6],
        6: [4, 5],
        7: [3, 4]
    }
    # 深搜
    paths: List[List] = dfs(adjacent_list, 1, 6)

    [print(path) for path in paths]

Java实现

java 复制代码
package org.example;

import java.util.*;

public class DepthFirstSearch {
    //    List<Integer> path = new ArrayList<>();
    Stack<Integer> path = new Stack<>();
    List<List<Integer>> paths = new ArrayList<>();

    void dfs(Map<Integer, List<Integer>> adjacent_list, int source, int current_node, int target) {
        path.push(current_node);
        if (current_node == target) {
            paths.add(new ArrayList<>(path));
            path.remove(path.size() - 1);
        } else {
            List<Integer> neighbors = adjacent_list.get(current_node);
            for (Integer neighbor : neighbors) {
                if (!path.contains(neighbor)) {
                    dfs(adjacent_list, source, neighbor, target);
                }
            }
            path.pop();
        }
    }

    public static void main(String[] args) {
        Map<Integer, List<Integer>> adjacent_list = new HashMap<>();
        adjacent_list.put(1, Arrays.asList(2, 3));
        adjacent_list.put(2, Arrays.asList(1, 4, 5));
        adjacent_list.put(3, Arrays.asList(1, 4, 7));
        adjacent_list.put(4, Arrays.asList(2, 3, 5, 6, 7));
        adjacent_list.put(5, Arrays.asList(2, 4, 6));
        adjacent_list.put(6, Arrays.asList(4, 5));
        adjacent_list.put(7, Arrays.asList(3, 4));
        System.out.println(adjacent_list);

        DepthFirstSearch dfs = new DepthFirstSearch();
        dfs.dfs(adjacent_list, 1, 1, 6);
        for (List<Integer> path : dfs.paths) {
            System.out.println(path);
        }

    }
}

基于深度优先搜索的有向图遍历

和无向图遍历一样,建立邻接矩阵即可。

Python实现

python 复制代码
from typing import List, Tuple, Any, Dict
import networkx
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from typing import List


def paint_topological_graph(nodes,
                            edges: List[Tuple],
                            coordinates: Dict[Any, Tuple] = None,
                            directed=False
                            ):
    print(nodes)
    print(edges)
    print(coordinates)

    graph = networkx.DiGraph() if directed else networkx.Graph()  # 全连通 有向图
    graph.add_nodes_from(nodes)
    graph.add_edges_from(edges)
    networkx.draw(graph, pos=coordinates, with_labels=True, node_color='red', )

    plt.show()
    print(networkx.has_path(graph, 1, 12))
    return graph


def dfs(adjacent_list, source, target):
    """
    :param adjacent_list: 邻接表
    :param source: 起点
    :param target: 终点
    :return: 起点-终点的所有路径
    """

    def dfs_helper(adjacent_list, source, current_node, target):

        path.append(current_node)
        if current_node == target:
            paths.append(path.copy())
            path.pop()
        else:
            neighbors = adjacent_list[current_node]
            for neighbor in neighbors:
                if neighbor not in path:
                    dfs_helper(adjacent_list, source, neighbor, target)
            path.pop()

    paths = []
    path = []
    dfs_helper(adjacent_list, source, source, target)
    return paths


if __name__ == "__main__":
    # 点坐标
    node_coord = {
        1: (1, 0), 2: (1, 3), 3: (2.5, 3), 4: (2, 2.5), 5: (3, 2), 6: (2, 1.5), 7: (3, 0), 8: (6, 0), 9: (5.5, 2),
        10: (5.5, 3), 11: (6, 4), 12: (0, 0), 13: (0, 1), 14: (5.5, 0.5), 15: (4.5, 0.5), 16: (5, 5),
    }

    edges = [
        (13, 12), (1, 2), (2, 4), (2, 3), (4, 3), (4, 5), (1, 6), (1, 7), (6, 7), (6, 5), (7, 8), (5, 9), (5, 10),
        (3, 11), (11, 10), (9, 8), (10, 9), (8, 11), (14, 15), (8, 14), (12, 1), (11, 16),
    ]

    # 画图
    paint_topological_graph(nodes=np.arange(1, 17, 1),
                            edges=edges,
                            directed=True,
                            coordinates=node_coord
                            )
    # 邻接表
    adjacent_list = {
        1: [2, 6, 7],
        2: [3, 4],
        3: [11],
        4: [3, 5],
        5: [9, 10],
        6: [5, 7],
        7: [8],
        8: [11, 14],
        9: [8],
        10: [9],
        11: [10, 16],
        12: [1],
        13: [12],
        14: [15],
        15: [],
        16: [],
    }
    # 深搜
    paths: List[List] = dfs(adjacent_list, 1, 11)

    [print(path) for path in paths]
相关推荐
hstar9527几秒前
二、即时通讯系统设计经验
java·架构
Amo Xiang4 分钟前
《100天精通Python——基础篇 2025 第5天:巩固核心知识,选择题实战演练基础语法》
python·选择题·基础语法
机器学习之心14 分钟前
机器学习用于算法交易(Matlab实现)
算法·机器学习·matlab
江梦寻14 分钟前
MacOS下Homebrew国内镜像加速指南(2025最新国内镜像加速)
开发语言·后端·python·macos·架构·策略模式
AL流云。14 分钟前
【优选算法】C++滑动窗口
数据结构·c++·算法
霖檬ing17 分钟前
Python——MySQL远程控制
开发语言·python·mysql
miniwa20 分钟前
Python编程精进:CSV 模块
python
风象南21 分钟前
SpringBoot的4种死信队列处理方式
java·spring boot·后端
互联网全栈架构1 小时前
遨游Spring AI:第一盘菜Hello World
java·人工智能·后端·spring
qq_429879671 小时前
省略号和可变参数模板
开发语言·c++·算法