基于深度优先搜索的图遍历

这里写目录标题

基于深度优先搜索的无向图遍历

使用深度优先搜索遍历无向图,将无向图用邻接表存储:

算法流程图

  1. 初始化起点 source ,当前节点v 为起点,终点 target ,路径path 为空,路径集合 paths 为空
  2. 将当前节点v 添加到 path
  3. 判断当前节点v是否为终点,是转step4,否转step5
  4. 保存 pathpaths 中,转step7
  5. 获取当前节点的所有邻接点,用集合N表示
  6. 遍历N ,若 N_i 不在 path 中,令v =N_i ,转step2;若N_ipath 中,i +=1。
  7. 删除 path 中最后一个节点,令v =path中最后一个节点,转step5
  8. 以上步骤遍历了所有每一个点的邻接点,算法结束,输出起点到终点的所有路径paths

Python实现

python 复制代码
from typing import List


def dfs(adjacent_list, source, target):
    """
    :param adjacent_list: 邻接表
    :param source: 起点
    :param target: 终点
    :return: 起点-终点的所有路径
    """

    def dfs_helper(adjacent_list, source, current_node, target):

        path.append(current_node)  # 压栈
        if current_node == target:
            paths.append(path.copy())
        else:
            neighbors = adjacent_list[current_node]
            for neighbor in neighbors:
                if neighbor not in path:
                    dfs_helper(adjacent_list, source, neighbor, target)
        path.pop()  # 弹栈

    paths = []
    path = []
    dfs_helper(adjacent_list, source, source, target)
    return paths


if __name__ == "__main__":
    # 邻接表
    adjacent_list = {
        1: [2, 3],
        2: [1, 4, 5],
        3: [1, 4, 7],
        4: [2, 3, 5, 6, 7],
        5: [2, 4, 6],
        6: [4, 5],
        7: [3, 4]
    }
    # 深搜
    paths: List[List] = dfs(adjacent_list, 1, 6)

    [print(path) for path in paths]

Java实现

java 复制代码
package org.example;

import java.util.*;

public class DepthFirstSearch {
    //    List<Integer> path = new ArrayList<>();
    Stack<Integer> path = new Stack<>();
    List<List<Integer>> paths = new ArrayList<>();

    void dfs(Map<Integer, List<Integer>> adjacent_list, int source, int current_node, int target) {
        path.push(current_node);
        if (current_node == target) {
            paths.add(new ArrayList<>(path));
            path.remove(path.size() - 1);
        } else {
            List<Integer> neighbors = adjacent_list.get(current_node);
            for (Integer neighbor : neighbors) {
                if (!path.contains(neighbor)) {
                    dfs(adjacent_list, source, neighbor, target);
                }
            }
            path.pop();
        }
    }

    public static void main(String[] args) {
        Map<Integer, List<Integer>> adjacent_list = new HashMap<>();
        adjacent_list.put(1, Arrays.asList(2, 3));
        adjacent_list.put(2, Arrays.asList(1, 4, 5));
        adjacent_list.put(3, Arrays.asList(1, 4, 7));
        adjacent_list.put(4, Arrays.asList(2, 3, 5, 6, 7));
        adjacent_list.put(5, Arrays.asList(2, 4, 6));
        adjacent_list.put(6, Arrays.asList(4, 5));
        adjacent_list.put(7, Arrays.asList(3, 4));
        System.out.println(adjacent_list);

        DepthFirstSearch dfs = new DepthFirstSearch();
        dfs.dfs(adjacent_list, 1, 1, 6);
        for (List<Integer> path : dfs.paths) {
            System.out.println(path);
        }

    }
}

基于深度优先搜索的有向图遍历

和无向图遍历一样,建立邻接矩阵即可。

Python实现

python 复制代码
from typing import List, Tuple, Any, Dict
import networkx
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from typing import List


def paint_topological_graph(nodes,
                            edges: List[Tuple],
                            coordinates: Dict[Any, Tuple] = None,
                            directed=False
                            ):
    print(nodes)
    print(edges)
    print(coordinates)

    graph = networkx.DiGraph() if directed else networkx.Graph()  # 全连通 有向图
    graph.add_nodes_from(nodes)
    graph.add_edges_from(edges)
    networkx.draw(graph, pos=coordinates, with_labels=True, node_color='red', )

    plt.show()
    print(networkx.has_path(graph, 1, 12))
    return graph


def dfs(adjacent_list, source, target):
    """
    :param adjacent_list: 邻接表
    :param source: 起点
    :param target: 终点
    :return: 起点-终点的所有路径
    """

    def dfs_helper(adjacent_list, source, current_node, target):

        path.append(current_node)
        if current_node == target:
            paths.append(path.copy())
            path.pop()
        else:
            neighbors = adjacent_list[current_node]
            for neighbor in neighbors:
                if neighbor not in path:
                    dfs_helper(adjacent_list, source, neighbor, target)
            path.pop()

    paths = []
    path = []
    dfs_helper(adjacent_list, source, source, target)
    return paths


if __name__ == "__main__":
    # 点坐标
    node_coord = {
        1: (1, 0), 2: (1, 3), 3: (2.5, 3), 4: (2, 2.5), 5: (3, 2), 6: (2, 1.5), 7: (3, 0), 8: (6, 0), 9: (5.5, 2),
        10: (5.5, 3), 11: (6, 4), 12: (0, 0), 13: (0, 1), 14: (5.5, 0.5), 15: (4.5, 0.5), 16: (5, 5),
    }

    edges = [
        (13, 12), (1, 2), (2, 4), (2, 3), (4, 3), (4, 5), (1, 6), (1, 7), (6, 7), (6, 5), (7, 8), (5, 9), (5, 10),
        (3, 11), (11, 10), (9, 8), (10, 9), (8, 11), (14, 15), (8, 14), (12, 1), (11, 16),
    ]

    # 画图
    paint_topological_graph(nodes=np.arange(1, 17, 1),
                            edges=edges,
                            directed=True,
                            coordinates=node_coord
                            )
    # 邻接表
    adjacent_list = {
        1: [2, 6, 7],
        2: [3, 4],
        3: [11],
        4: [3, 5],
        5: [9, 10],
        6: [5, 7],
        7: [8],
        8: [11, 14],
        9: [8],
        10: [9],
        11: [10, 16],
        12: [1],
        13: [12],
        14: [15],
        15: [],
        16: [],
    }
    # 深搜
    paths: List[List] = dfs(adjacent_list, 1, 11)

    [print(path) for path in paths]
相关推荐
m0Java门徒1 分钟前
面向对象编程核心:封装、继承、多态与 static 关键字深度解析
java·运维·开发语言·intellij-idea·idea
liuweidong08024 分钟前
【Pandas】pandas DataFrame radd
开发语言·python·pandas
IT_Octopus8 分钟前
AI工程pytorch小白TorchServe部署模型服务
人工智能·pytorch·python
CodeDevMaster24 分钟前
browser-use:AI驱动的浏览器自动化工具使用指南
python·llm
无心水27 分钟前
【Java面试笔记:基础】8.对比Vector、ArrayList、LinkedList有何区别?
java·笔记·面试·vector·arraylist·linkedlist
创码小奇客1 小时前
MongoDB 时间序列:解锁数据时光机的终极指南
java·mongodb·trae
黯_森1 小时前
Java面向对象
java·后端
代码小侦探1 小时前
Java中以Maven方式引入Oracle JDBC Driver依赖的详解
java·oracle·maven
不畏惧的少年1 小时前
AQS的底层实现原理
java
内网渗透1 小时前
Python 虚拟环境管理:venv 与 conda 的选择与配置
开发语言·python·conda·虚拟环境·venv