【00】神经网络之初始化参数

问题描述

#随机初始化权重

w12 = np.random.randn(100, 784)/np.sqrt(784)

为什么除以28

回答

这里的代码是初始化一个深度学习模型中的权重矩阵w12。权重矩阵的形状是(100, 784),这是一个从784个输入节点到100个隐藏节点的全连接层。

除以np.sqrt(784)是权重初始化的一种策略,通常称为"Xavier初始化"或"Glorot初始化"。该初始化策略的目的是使权重的初始值具有合适的尺度,以保证网络中每一层的信号既不会过小也不会过大,从而有助于模型的收敛。
784这个数字是28 x 28的结果,这很可能是一个28x28像素的图像,对应的是MNIST数据集中的图像尺寸。

除以np.sqrt(784)的原因是:

  1. 根据Xavier初始化,当使用tanh激活函数时,权重应该从均值为0、方差为1/n的分布中初始化,其中n是输入节点的数量。在这里,n = 784
  2. 当从标准正态分布中随机抽取权重(使用np.random.randn())时,得到的权重具有均值0和方差1。为了将方差调整为1/n,可以将权重除以np.sqrt(n)

因此,除以np.sqrt(784)是为了将权重的方差调整为1/784,这有助于优化算法的收敛性。

备注:

random.randn 是NumPy库中的一个函数,用于从标准正态分布(均值为0,方差为1)中生成随机数。

具体来说,当你使用 random.randn 时:

  • 它会返回一个或一组从标准正态分布中随机抽取的数值。
  • 参数决定了返回数组的形状。例如,np.random.randn(3, 4) 会返回一个3x4的数组,其中的每个元素都是从标准正态分布中随机抽取的。

使用 random.randn 是初始化神经网络权重的常用方法,特别是当使用某些权重初始化策略(如Xavier初始化)时。从标准正态分布中抽取的随机权重可以确保在训练开始时权重是小的、不同的,并且它们的分布具有某种规律性。这有助于避免某些训练问题,如权重全部更新为相同的值或权重更新太大导致的梯度爆炸。

相关推荐
tap.AI7 分钟前
Deepseek(九)多语言客服自动化:跨境电商中的多币种、多语种投诉实时处理
运维·人工智能·自动化
好奇龙猫12 分钟前
【人工智能学习-AI-MIT公开课第 20・21 概率推理】
人工智能·学习
实战项目14 分钟前
边缘计算在智慧物流中的实时跟踪应用
人工智能·边缘计算
绀目澄清17 分钟前
Unity 的AI Navigation 系统详细总结
人工智能·unity·游戏引擎
一招定胜负17 分钟前
图像形态学+边缘检测及CNN关联
人工智能·深度学习·cnn
dagouaofei17 分钟前
2026 年工作计划 PPT 制作方式对比:AI 与传统方法差异
人工智能·python·powerpoint
万行38 分钟前
机器学习&第五章生成式生成器
人工智能·python·算法·机器学习
独自破碎E39 分钟前
介绍一下Spring AI框架
java·人工智能·spring
laplace012340 分钟前
第三章 大语言模型基础
人工智能·语言模型·自然语言处理·agent·rag
Lun3866buzha1 小时前
轮胎胎面花纹识别与分类:基于solo_r50_fpn模型的实现与优化
人工智能·分类·数据挖掘