【00】神经网络之初始化参数

问题描述

#随机初始化权重

w12 = np.random.randn(100, 784)/np.sqrt(784)

为什么除以28

回答

这里的代码是初始化一个深度学习模型中的权重矩阵w12。权重矩阵的形状是(100, 784),这是一个从784个输入节点到100个隐藏节点的全连接层。

除以np.sqrt(784)是权重初始化的一种策略,通常称为"Xavier初始化"或"Glorot初始化"。该初始化策略的目的是使权重的初始值具有合适的尺度,以保证网络中每一层的信号既不会过小也不会过大,从而有助于模型的收敛。
784这个数字是28 x 28的结果,这很可能是一个28x28像素的图像,对应的是MNIST数据集中的图像尺寸。

除以np.sqrt(784)的原因是:

  1. 根据Xavier初始化,当使用tanh激活函数时,权重应该从均值为0、方差为1/n的分布中初始化,其中n是输入节点的数量。在这里,n = 784
  2. 当从标准正态分布中随机抽取权重(使用np.random.randn())时,得到的权重具有均值0和方差1。为了将方差调整为1/n,可以将权重除以np.sqrt(n)

因此,除以np.sqrt(784)是为了将权重的方差调整为1/784,这有助于优化算法的收敛性。

备注:

random.randn 是NumPy库中的一个函数,用于从标准正态分布(均值为0,方差为1)中生成随机数。

具体来说,当你使用 random.randn 时:

  • 它会返回一个或一组从标准正态分布中随机抽取的数值。
  • 参数决定了返回数组的形状。例如,np.random.randn(3, 4) 会返回一个3x4的数组,其中的每个元素都是从标准正态分布中随机抽取的。

使用 random.randn 是初始化神经网络权重的常用方法,特别是当使用某些权重初始化策略(如Xavier初始化)时。从标准正态分布中抽取的随机权重可以确保在训练开始时权重是小的、不同的,并且它们的分布具有某种规律性。这有助于避免某些训练问题,如权重全部更新为相同的值或权重更新太大导致的梯度爆炸。

相关推荐
youcans_1 分钟前
【DeepSeek 论文精读】15. DeepSeek-V3.2:开拓开源大型语言模型新前沿
论文阅读·人工智能·语言模型·智能体·deepseek
_Twink1e3 分钟前
【HCIA-AIV4.0】2025题库+解析(二)
人工智能·深度学习·机器学习
新知图书3 分钟前
FastGPT的特点与优势
人工智能·ai agent·智能体·大模型应用开发·大模型应用
serve the people19 分钟前
PQ+IVF组合解决海量向量内存占用高和检索慢的问题
人工智能·python
on_pluto_20 分钟前
【debug】解决 5070ti 与 pytorch 版本不兼容的问题
人工智能·pytorch·python
OpenCSG25 分钟前
悟界Emu3.5发布:世界模型诞生,多模态进入“下一状态预测”新纪元
人工智能·开源
铅笔侠_小龙虾26 分钟前
深度学习理论推导--多元线性回归
人工智能·深度学习·机器学习
腾视科技28 分钟前
私有云时代来临:AI NAS如何重塑你的数字生活?
人工智能·生活
TextIn智能文档云平台30 分钟前
PDF格式转化,哪款软件的准确率更高?
人工智能·pdf
星座52838 分钟前
智慧农林核心遥感技术暨:AI赋能农林遥感智能提取99案例实践-生化参数智能反演、表型信息智能提取、胁迫状态智能识别
人工智能·高光谱·智慧农林