【00】神经网络之初始化参数

问题描述

#随机初始化权重

w12 = np.random.randn(100, 784)/np.sqrt(784)

为什么除以28

回答

这里的代码是初始化一个深度学习模型中的权重矩阵w12。权重矩阵的形状是(100, 784),这是一个从784个输入节点到100个隐藏节点的全连接层。

除以np.sqrt(784)是权重初始化的一种策略,通常称为"Xavier初始化"或"Glorot初始化"。该初始化策略的目的是使权重的初始值具有合适的尺度,以保证网络中每一层的信号既不会过小也不会过大,从而有助于模型的收敛。
784这个数字是28 x 28的结果,这很可能是一个28x28像素的图像,对应的是MNIST数据集中的图像尺寸。

除以np.sqrt(784)的原因是:

  1. 根据Xavier初始化,当使用tanh激活函数时,权重应该从均值为0、方差为1/n的分布中初始化,其中n是输入节点的数量。在这里,n = 784
  2. 当从标准正态分布中随机抽取权重(使用np.random.randn())时,得到的权重具有均值0和方差1。为了将方差调整为1/n,可以将权重除以np.sqrt(n)

因此,除以np.sqrt(784)是为了将权重的方差调整为1/784,这有助于优化算法的收敛性。

备注:

random.randn 是NumPy库中的一个函数,用于从标准正态分布(均值为0,方差为1)中生成随机数。

具体来说,当你使用 random.randn 时:

  • 它会返回一个或一组从标准正态分布中随机抽取的数值。
  • 参数决定了返回数组的形状。例如,np.random.randn(3, 4) 会返回一个3x4的数组,其中的每个元素都是从标准正态分布中随机抽取的。

使用 random.randn 是初始化神经网络权重的常用方法,特别是当使用某些权重初始化策略(如Xavier初始化)时。从标准正态分布中抽取的随机权重可以确保在训练开始时权重是小的、不同的,并且它们的分布具有某种规律性。这有助于避免某些训练问题,如权重全部更新为相同的值或权重更新太大导致的梯度爆炸。

相关推荐
阿坡RPA12 小时前
手搓MCP客户端&服务端:从零到实战极速了解MCP是什么?
人工智能·aigc
用户277844910499312 小时前
借助DeepSeek智能生成测试用例:从提示词到Excel表格的全流程实践
人工智能·python
机器之心12 小时前
刚刚,DeepSeek公布推理时Scaling新论文,R2要来了?
人工智能
算AI14 小时前
人工智能+牙科:临床应用中的几个问题
人工智能·算法
凯子坚持 c15 小时前
基于飞桨框架3.0本地DeepSeek-R1蒸馏版部署实战
人工智能·paddlepaddle
你觉得20515 小时前
哈尔滨工业大学DeepSeek公开课:探索大模型原理、技术与应用从GPT到DeepSeek|附视频与讲义下载方法
大数据·人工智能·python·gpt·学习·机器学习·aigc
8K超高清16 小时前
中国8K摄像机:科技赋能文化传承新图景
大数据·人工智能·科技·物联网·智能硬件
hyshhhh16 小时前
【算法岗面试题】深度学习中如何防止过拟合?
网络·人工智能·深度学习·神经网络·算法·计算机视觉
薛定谔的猫-菜鸟程序员16 小时前
零基础玩转深度神经网络大模型:从Hello World到AI炼金术-详解版(含:Conda 全面使用指南)
人工智能·神经网络·dnn
币之互联万物16 小时前
2025 AI智能数字农业研讨会在苏州启幕,科技助农与数据兴业成焦点
人工智能·科技