2022最新版-李宏毅机器学习深度学习课程-P25 Spacial Transformer Layer

data augmentation/spacial transformer

CNN 并不能够处理影像放大缩小,或者是旋转的问题。所以在做影像辨识的时候,往往都要做 Data Augmentation,把你的训练数据截一小块出来放大缩小、把图片旋转,CNN 才会做到好的结果。

有一个架构叫 spacial Transformer Layer可以处理。

设计一个层,需要的地方=1,不要的地方=0

经过一个NN,FP发生平移

还可以放大或缩小,只需要改变参数

旋转一共需要6个参数

当6个参数全部设定的是整数时,结果比较好处理

但如果是小数时呢?通过最终答案的四舍五入得到结果。但此时梯度也不好计算。

可以这样假设:假设最终结果发生一些微小的变化,四舍五入后得到的结果是一样的,这就说明梯度几乎=0!!

使用插值方法代替四舍五入

最终结果与周围四个值都有关。此时输出值的变化时刻影响最终结果。

把ST看成橙色,它可以放在很多地方。

这个视频的含义是改变一些输入后(变大 变小 左右旋转),经过ST层,输出结果基本不变。

实例

这里用了single ST和multi ST,效果有些变化

这个例子用了2层和4层的ST,输入图片有两种大小规格。

2层的是只识别鸟嘴和鸟翼;4层还识别了其他地方。

相关推荐
拉姆哥的小屋2 分钟前
从原子到性能:机器学习如何重塑双金属催化剂的设计范式
人工智能·python·算法·机器学习
sponge'3 分钟前
opencv学习笔记13:U-Net
人工智能·深度学习·机器学习
free-elcmacom11 分钟前
机器学习进阶<10>分类器集成:集成学习算法
python·算法·机器学习·集成学习
数据科学项目实践20 分钟前
建模步骤 3 :数据探索(EDA) — 1、初步了解数据:自定义函数
大数据·人工智能·python·机器学习·matplotlib·数据可视化
往事如yan34 分钟前
机器学习面试核心概念速览
人工智能·机器学习
IT·小灰灰1 小时前
当AI开口说话:可灵视频2.6如何终结“默片时代“重塑视听共生
大数据·人工智能·python·深度学习·数据挖掘·开源·音视频
渡我白衣1 小时前
AI应用层革命(六)——智能体的伦理边界与法律框架:当机器开始“做决定”
人工智能·深度学习·神经网络·机器学习·计算机视觉·自然语言处理·语音识别
小哲慢慢来2 小时前
机器学习基本概念
人工智能·机器学习
陈 洪 伟2 小时前
Transformer彻底剖析(4):注意力为什么要用多头以及为什么有多层注意力
transformer·注意力机制
算法与编程之美2 小时前
机器学习测试模型的性能评估与探索
人工智能·机器学习