2022最新版-李宏毅机器学习深度学习课程-P25 Spacial Transformer Layer

data augmentation/spacial transformer

CNN 并不能够处理影像放大缩小,或者是旋转的问题。所以在做影像辨识的时候,往往都要做 Data Augmentation,把你的训练数据截一小块出来放大缩小、把图片旋转,CNN 才会做到好的结果。

有一个架构叫 spacial Transformer Layer可以处理。

设计一个层,需要的地方=1,不要的地方=0

经过一个NN,FP发生平移

还可以放大或缩小,只需要改变参数

旋转一共需要6个参数

当6个参数全部设定的是整数时,结果比较好处理

但如果是小数时呢?通过最终答案的四舍五入得到结果。但此时梯度也不好计算。

可以这样假设:假设最终结果发生一些微小的变化,四舍五入后得到的结果是一样的,这就说明梯度几乎=0!!

使用插值方法代替四舍五入

最终结果与周围四个值都有关。此时输出值的变化时刻影响最终结果。

把ST看成橙色,它可以放在很多地方。

这个视频的含义是改变一些输入后(变大 变小 左右旋转),经过ST层,输出结果基本不变。

实例

这里用了single ST和multi ST,效果有些变化

这个例子用了2层和4层的ST,输入图片有两种大小规格。

2层的是只识别鸟嘴和鸟翼;4层还识别了其他地方。

相关推荐
勾股导航2 小时前
K-means
人工智能·机器学习·kmeans
Jay Kay2 小时前
GVPO:Group Variance Policy Optimization
人工智能·算法·机器学习
小鸡吃米…3 小时前
机器学习面试问题及答案
机器学习
Yeats_Liao4 小时前
评估体系构建:基于自动化指标与人工打分的双重验证
运维·人工智能·深度学习·算法·机器学习·自动化
断眉的派大星4 小时前
均值为0,方差为1:数据的“标准校服”
人工智能·机器学习·均值算法
Tadas-Gao4 小时前
缸中之脑:大模型架构的智能幻象与演进困局
人工智能·深度学习·机器学习·架构·大模型·llm
2301_818730565 小时前
transformer(上)
人工智能·深度学习·transformer
木枷5 小时前
Online Process Reward Learning for Agentic Reinforcement Learning
人工智能·深度学习·机器学习
m0_563745115 小时前
误差卡尔曼滤波在VINS-mono中的应用
人工智能·机器学习
陈天伟教授5 小时前
人工智能应用- 语言处理:02.机器翻译:规则方法
人工智能·深度学习·神经网络·语言模型·自然语言处理·机器翻译