【多媒体技术与实践】使用OpenCV处理图像(实验三.上)

1:图像直方图

将原彩色图像转成灰度图像,得到该灰度图像的灰度直方图,并对灰度直方图进行直方图均衡化,将原图、灰度图、直方图及均衡化后的直方图一起拼接为一张图片

python 复制代码
import cv2  
import numpy as np  
import matplotlib.pyplot as plt  
  
# 读取原彩色图像  
img = cv2.imread(r'input.jpg')  
  
# 将原彩色图像转换为灰度图像  
gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)  
  
# 获取灰度直方图  
hist, bins = np.histogram(gray_img.flatten(), 256, [0, 256])  
  
# 进行直方图均衡化  
equ_img = cv2.equalizeHist(gray_img)  
  
# 获取均衡化后的灰度直方图  
equ_hist, bins = np.histogram(equ_img.flatten(), 256, [0, 256])  
  
# 绘制原图、灰度图、直方图和均衡化后的直方图  
fig, axs = plt.subplots(2, 2)  
axs[0, 0].imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))  
axs[0, 0].set_title('Original Image')  
axs[0, 1].imshow(gray_img, cmap='gray')  
axs[0, 1].set_title('Grayscale Image')  
axs[1, 0].hist(gray_img.flatten(), 256, [0, 256])  
axs[1, 0].set_title('Original Histogram')  
axs[1, 1].hist(equ_img.flatten(), 256, [0, 256])  
axs[1, 1].set_title('Equalized Histogram')  
plt.tight_layout()  
  
# 保存拼接后的图片  
plt.savefig(r'out.jpg')

eg.

2:图像变换

对作品一的灰度图像进行傅里叶变换,转成频域图像,对该频域图像分别进行低通和高通滤波后做傅里叶逆变换还原,得到两幅图像,将灰度图像、频域图像、低通还原图像及高通还原图像一起拼接为一张图片

python 复制代码
import cv2
import numpy as np
import matplotlib.pyplot as plt

# 读取原彩色图像  
img = cv2.imread(r'input.jpg')  
  
# 将原彩色图像转换为灰度图像  
gray_image = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)  

# 进行傅里叶变换
f_transform = np.fft.fft2(gray_image)
fshift = np.fft.fftshift(f_transform)
magnitude_spectrum = 20 * np.log(np.abs(fshift))

# 创建一个低通滤波器(示例中使用方形掩码)
rows, cols = gray_image.shape
crow, ccol = rows // 2, cols // 2
low_pass_filter = np.zeros((rows, cols), np.uint8)
low_pass_filter[crow-30:crow+30, ccol-30:ccol+30] = 1

# 应用低通滤波器
fshift_low = fshift * low_pass_filter

# 创建一个高通滤波器(高通滤波器是低通滤波器的逆)
high_pass_filter = 1 - low_pass_filter

# 应用高通滤波器
fshift_high = fshift * high_pass_filter

# 傅里叶逆变换还原
img_low = np.fft.ifftshift(fshift_low)
img_low = np.fft.ifft2(img_low)
img_low = np.abs(img_low)

img_high = np.fft.ifftshift(fshift_high)
img_high = np.fft.ifft2(img_high)
img_high = np.abs(img_high)

# 调整图像位置
result_image = np.zeros((rows*2, cols*2), dtype=np.uint8)
result_image[0:rows, 0:cols] = gray_image
result_image[0:rows, cols:] = magnitude_spectrum
result_image[rows:, 0:cols] = img_low
result_image[rows:, cols:] = img_high

# 显示并保存拼接后的图像
cv2.imwrite(r'output.jpg', result_image)
plt.imshow(result_image, cmap='gray')
plt.axis('off')
plt.show()

eg.

3:图像平滑

从作品一的原彩色图像中的任意位置截取一块大小为 300*400 的图像块,然后添加高斯噪声,并用任意一种平滑方法(均值滤波、高斯滤波、中值滤波)对图像进行平滑处理,将原图截取的图像块、加噪图像及平滑图像一起拼接为一张图片

python 复制代码
import cv2
import numpy as np

# 读取原彩色图像
original_image = cv2.imread(r'input.jpg')

# 截取图像块
x, y = 100, 200  # 起始坐标,请根据需要修改
roi = original_image[y:y+300, x:x+400]

# 添加高斯噪声
mean = 0
stddev = 25  # 调整噪声的强度
gaussian_noise = np.random.normal(mean, stddev, roi.shape).astype(np.uint8)
noisy_roi = cv2.add(roi, gaussian_noise)

# 使用均值滤波对图像进行平滑处理
smoothed_mean = cv2.blur(noisy_roi, (5, 5))  # 调整内核大小

# 创建一个空白的拼接图像
result_image = np.zeros((300, 1200, 3), dtype=np.uint8)

# 将原图截取的图像块、加噪图像和平滑图像拼接在一起
result_image[0:300, 0:400] = roi
result_image[0:300, 400:800] = noisy_roi
result_image[0:300, 800:1200] = smoothed_mean

# 保存拼接后的图像
cv2.imwrite(r'output.jpg', result_image)

eg.

相关推荐
whoarethenext1 小时前
C++/OpenCV地砖识别系统结合 Libevent 实现网络化 AI 接入
c++·人工智能·opencv
我不是小upper4 小时前
PDF转Markdown基准测试
图像处理·人工智能·markdown·marker·docling
要努力啊啊啊5 小时前
YOLOv3 训练与推理流程详解-结合真实的数据样例进行模拟
人工智能·yolo·机器学习·计算机视觉·目标跟踪
要努力啊啊啊7 小时前
YOLOv2 中非极大值抑制(NMS)机制详解与实现
人工智能·深度学习·yolo·计算机视觉·目标跟踪
知舟不叙9 小时前
基于OpenCV实现实时颜色检测
人工智能·opencv·计算机视觉·颜色检测
道传科技上位机11 小时前
机器视觉标定讲解
计算机视觉
硅谷秋水15 小时前
NORA:一个用于具身任务的小型开源通才视觉-语言-动作模型
人工智能·深度学习·机器学习·计算机视觉·语言模型·机器人
whoarethenext15 小时前
使用 C/C++的OpenCV 裁剪 MP4 视频
c语言·c++·opencv
好喜欢吃红柚子17 小时前
【报错解决】RTX4090 nvrtc: error: invalid value for --gpu-architecture (-arch)
人工智能·python·深度学习·计算机视觉·visual studio
硬件学长森哥20 小时前
Android音视频多媒体开源框架基础大全
android·图像处理·音视频