1.官方介绍
原英文链接:https://cran.r-project.org/web/packages/ScottKnottESD/ScottKnottESD.pdf
斯科特-克诺特效应大小差异(Scott-Knott Effect Size Difference , ESD)检验是一种均值比较方法,它利用分层聚类将一组处理均值(treatment means)(如变量重要性评分均值、模型性能均值)划分为统计学上有显著差异的组,差异不可忽略。这是斯科特-克诺特检验的另一种方法,它考虑的是组内和组间处理均值的差异大小(即效应大小)
因此,Scott-Knott ESD 检验可以得出处理平均值的排序,同时确保:
(1) 每组中所有处理的差异幅度可以忽略不计;
(2) 每组中所有处理的差异幅度可以忽略不计。
Scott-Knott ESD 检验的机制由两个步骤组成:
step1 :找出一个分区(partition),使各组间的处理均值(treatment means)最大化。我们首先对处理均值(treatment means)进行排序。然后,按照最初的 Scott-Knott 检验方法,我们计算组间平方和(即数据点的离散度量),找出能使组间处理均值(treatment means)最大化的分区。
step2:分成两组或合并为一组。而不是使用似然比检验和卡方分布作为拆分和合并的标准(即对所有处理均值相等进行假设检验 我们不使用似然比检验和卡方分布作为拆分和合并标准(即假设检验所有处理均值相等),而是分析每对 的差异大小。如果有任何一对两组的处理均值是 不可忽略,我们就分成两组。否则,我们合并为一组。我们使用 Cohen effect size(科恩效应大小)--一种基于两组均值之差除以两组均值标准差的效应大小估计值(d = (mean(x_1) - mean(x_2))/s.d.)。
早期版本的 Scott-Knott ESD 检验(v1.x)会对 Scott-Knott 检验得出的组进行后处理,与此不同的是,Scott-Knott ESD 检验(v2.x)会对组进行预处理,合并统计上差异可忽略不计的不同组对。
2.计算过程**(GPT介绍)**
Scott Knott ESD的计算过程如下:
- 将数据按照某种特定的指标(如均值、中位数等)进行排序。
- 将数据分成两个子组,其中一个子组包含第一个数据点,另一个子组包含剩下的数据点。
- 计算两个子组之间的均值差异,并计算该差异的统计显著性。
- 如果两个子组之间的差异显著,则将数据点分为两个新的子组,否则保持原来的分组不变。
- 重复步骤3和4,直到无法再将数据点分为两个子组为止。
- 最后,根据分组的结果,确定哪些子组之间存在显著差异。
Scott Knott ESD方法的优点是它能够准确地确定哪些子组之间存在显著差异,并且可以处理多组比较的情况。它适用于各种类型的数据,但在某些情况下可能会受到数据分布的影响。
3.举个栗子**(GPT介绍)**
在上述例子中,我们使用Scott-Knott ESD测试来分析三种不同治疗方法的平均疼痛减轻程度,并确定是否存在统计上不同的组。
首先,我们需要计算每种治疗方法的平均疼痛减轻程度。假设我们有一个样本中的数据如下:
治疗方法A:4.0, 4.6, 4.3, 4.7, 4.2 治疗方法B:3.7, 3.9, 3.6, 4.0, 3.5 治疗方法C:4.1,
4.4, 4.0, 4.3, 3.8
对于每种治疗方法,我们计算其平均值:
治疗方法
A的平均值 = (4.0 + 4.6 + 4.3 + 4.7 + 4.2) / 5 = 4.36
治疗方法B的平均值 = (3.7 + 3.9 + 3.6 + 4.0 + 3.5) / 5 = 3.74
治疗方法C的平均值 = (4.1 + 4.4 + 4.0 + 4.3 + 3.8) / 5 = 4.12
接下来,我们使用Scott-Knott ESD测试进行分析。首先,将这三个平均值按照从小到大的顺序排列:
3.74, 4.12, 4.36
然后,我们计算两两平均值之间的Cohen's d效应大小。Cohen's d是衡量两个平均值之间差异的标准化指标,表示差异的大小。
对于这个例子,我们可以计算以下两个Cohen's d值:
Cohen's d(A, B) = (4.36 - 3.74) / sqrt((0.13^2 + 0.13^2) / 2) ≈ 1.22
Cohen's d(B, C) = (4.12 - 3.74) / sqrt((0.13^2 + 0.13^2) / 2) ≈ 0.92
接着,我们根据Cohen's d值的大小来判断是否存在统计上不同的组。一般来说,如果两个组之间的Cohen's
d值小于某个阈值(通常为0.2或0.3),则认为它们之间的差异可以忽略不计。
在这个例子中,Cohen's d(A, B) = 1.22和Cohen's d(B, C) =
0.92都大于0.2或0.3的阈值。因此,我们可以认为治疗方法A和治疗方法B以及治疗方法B和治疗方法C之间存在统计上不同的组。
最后,根据Cohen's
d值的大小,我们将这三个治疗方法分成不同的组。在这个例子中,我们可以将治疗方法A和治疗方法C视为一个组,而治疗方法B作为另一个组。
综上所述,通过Scott-Knott
ESD测试,我们将三种不同的治疗方法分成了两个统计上不同的组,以便更好地理解它们之间的疼痛减轻效果的差异。
然后关于ScottKnott ESD最终排序,GPT是这么说的:
根据上述例子中的数据和计算过程,最终得到的Scott-Knott ESD测试排序结果如下:
- 治疗方法A:4.36
- 治疗方法C:4.12
- 治疗方法B:3.74
根据平均值的大小,我们可以看到治疗方法A的平均值最高,其次是治疗方法C,最低的是治疗方法B。这意味着在这个例子中,治疗方法A的平均疼痛减轻程度较好,而治疗方法B的效果较差。同时,根据Scott-Knott
ESD测试的结果,我们可以将这三种治疗方法分成两个统计上不同的组:组1包括治疗方法A和治疗方法C,组2包括治疗方法B。
关于分组的解释:
Scott-Knott ESD测试的目的是将一组数据分成不同的组,并对这些组进行排序,以便更好地理解数据之间的差异。测试结果中的组和排序结果是紧密相关的。
在Scott-Knott ESD测试中,首先对数据进行排序,通常是按照平均值的大小进行排序。然后,通过计算两两平均值之间的Cohen's
d值来判断是否存在统计上不同的组。如果两个组之间的Cohen's d值大于某个阈值,那么它们被认为是统计上不同的组。
根据Cohen's d值的大小,可以将数据分成不同的组。具体来说,Cohen's d值较大的组之间的差异更大,而Cohen's
d值较小的组之间的差异较小。因此,根据Cohen's d值的大小,可以将数据分成不同的组,并按照组的顺序进行排序。
因此,Scott-Knott ESD测试的组和排序结果是相互关联的。组的形成是基于Cohen's
d值的大小,而排序结果则是根据组的顺序进行的。通过这种方式,Scott-Knott
ESD测试可以帮助我们更好地理解数据之间的差异,并提供有关数据排序的信息。