决策树oo

决策树学习的算法通常是一个递归地选择最优特征(选择方法的不同,对应着不同的算法),并根据该特征对训练数据进行分割,使得各个子数据集有一个最好的分类的过程。这一过程对应着对特征空间的划分,也对应着决策树的构建

步骤(译)

从根节点开始

计算所有可能特征的信息增益,并选择信息增益最高的特征

根据选择的特征对数据集进行拆分,并创建树的左右分支

继续重复分割过程,直到满足停止条件:

当一个节点100%是一个类时当分割节点时

将导致树超过最大深度

额外分割的信息增益小于阈值

当一个节点中的样例数量低于阈值时

简单实例

python 复制代码
# 导入所需的库
from sklearn.tree import DecisionTreeClassifier
from sklearn import tree
import matplotlib.pyplot as plt
import numpy as np

# 解决中文乱码问题
plt.rcParams['font.sans-serif']=['SimHei'] 
# 创建训练数据集
X = np.array([[0, 150], [0, 200], [1, 160], [1, 190], [0, 180],
              [1, 140], [1, 210], [0, 175], [0, 220], [1, 165],
              [1, 155], [0, 185], [0, 195], [1, 170], [1, 200]])
y = np.array([0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1])

# 创建深度等于3的决策树模型
model = DecisionTreeClassifier(max_depth=3)

# 训练模型
model.fit(X, y)

# 可视化生成的决策树
plt.figure(figsize=(12, 8))
tree.plot_tree(model, filled=True, feature_names=["颜色", "重量"], class_names=["苹果", "橙子"])
plt.title("决策树示例")
plt.show()
相关推荐
Ethan-D1 小时前
#每日一题19 回溯 + 全排列思想
java·开发语言·python·算法·leetcode
Benny_Tang1 小时前
题解:CF2164C Dungeon
c++·算法
仙俊红1 小时前
LeetCode174双周赛T3
数据结构·算法
橘颂TA2 小时前
【剑斩OFFER】算法的暴力美学——LeetCode 733 题:图像渲染
算法·leetcode·职场和发展
不穿格子的程序员2 小时前
从零开始写算法——回溯篇2:电话号码的字母组合 + 组合总和
算法·深度优先·回溯
持梦远方2 小时前
算法剖析1:摩尔投票算法 ——寻找出现次数超过一半的数
c++·算法·摩尔投票算法
weixin_446934032 小时前
统计学中“in sample test”与“out of sample”有何区别?
人工智能·python·深度学习·机器学习·计算机视觉
程序员-King.3 小时前
链表——算法总结与新手教学指南
数据结构·算法·链表
Ulyanov3 小时前
战场地形生成与多源数据集成
开发语言·python·算法·tkinter·pyside·pyvista·gui开发
FMRbpm3 小时前
树的练习6--------938.二叉搜索树的范围和
数据结构·c++·算法·leetcode·职场和发展·新手入门