决策树oo

决策树学习的算法通常是一个递归地选择最优特征(选择方法的不同,对应着不同的算法),并根据该特征对训练数据进行分割,使得各个子数据集有一个最好的分类的过程。这一过程对应着对特征空间的划分,也对应着决策树的构建

步骤(译)

从根节点开始

计算所有可能特征的信息增益,并选择信息增益最高的特征

根据选择的特征对数据集进行拆分,并创建树的左右分支

继续重复分割过程,直到满足停止条件:

当一个节点100%是一个类时当分割节点时

将导致树超过最大深度

额外分割的信息增益小于阈值

当一个节点中的样例数量低于阈值时

简单实例

python 复制代码
# 导入所需的库
from sklearn.tree import DecisionTreeClassifier
from sklearn import tree
import matplotlib.pyplot as plt
import numpy as np

# 解决中文乱码问题
plt.rcParams['font.sans-serif']=['SimHei'] 
# 创建训练数据集
X = np.array([[0, 150], [0, 200], [1, 160], [1, 190], [0, 180],
              [1, 140], [1, 210], [0, 175], [0, 220], [1, 165],
              [1, 155], [0, 185], [0, 195], [1, 170], [1, 200]])
y = np.array([0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1])

# 创建深度等于3的决策树模型
model = DecisionTreeClassifier(max_depth=3)

# 训练模型
model.fit(X, y)

# 可视化生成的决策树
plt.figure(figsize=(12, 8))
tree.plot_tree(model, filled=True, feature_names=["颜色", "重量"], class_names=["苹果", "橙子"])
plt.title("决策树示例")
plt.show()
相关推荐
珂朵莉MM2 分钟前
2025年睿抗机器人开发者大赛CAIP-编程技能赛-本科组(国赛)解题报告 | 珂学家
java·人工智能·算法·机器人·无人机
l1t12 分钟前
郭其先生利用DeepSeek实现的PostgreSQL递归CTE实现DFS写法
sql·算法·postgresql·深度优先
橘颂TA15 分钟前
【剑斩OFFER】算法的暴力美学——力扣 227 题:基本计算机Ⅱ
c++·算法·leetcode·职场和发展·结构于算法
信奥卷王16 分钟前
2025年12月GESPC++二级真题解析(含视频)
算法
Z1Jxxx17 分钟前
输入n个数进行排序,要求先按奇偶后按从小到大的顺序排序
数据结构·算法
乐迪信息18 分钟前
乐迪信息:船体AI烟火检测,24小时火灾自动预警
人工智能·物联网·算法·目标检测·语音识别
Z1Jxxx19 分钟前
整除整除整除
开发语言·c++·算法
Swift社区24 分钟前
LeetCode 471 编码最短长度的字符串
算法·leetcode·职场和发展
没有天赋那就反复24 分钟前
JAVA length
java·开发语言·算法
Tisfy24 分钟前
LeetCode 0712.两个字符串的最小ASCII删除和:反向思维保留最大(动态规划)
算法·leetcode·动态规划·字符串·dp·子序列