决策树oo

决策树学习的算法通常是一个递归地选择最优特征(选择方法的不同,对应着不同的算法),并根据该特征对训练数据进行分割,使得各个子数据集有一个最好的分类的过程。这一过程对应着对特征空间的划分,也对应着决策树的构建

步骤(译)

从根节点开始

计算所有可能特征的信息增益,并选择信息增益最高的特征

根据选择的特征对数据集进行拆分,并创建树的左右分支

继续重复分割过程,直到满足停止条件:

当一个节点100%是一个类时当分割节点时

将导致树超过最大深度

额外分割的信息增益小于阈值

当一个节点中的样例数量低于阈值时

简单实例

python 复制代码
# 导入所需的库
from sklearn.tree import DecisionTreeClassifier
from sklearn import tree
import matplotlib.pyplot as plt
import numpy as np

# 解决中文乱码问题
plt.rcParams['font.sans-serif']=['SimHei'] 
# 创建训练数据集
X = np.array([[0, 150], [0, 200], [1, 160], [1, 190], [0, 180],
              [1, 140], [1, 210], [0, 175], [0, 220], [1, 165],
              [1, 155], [0, 185], [0, 195], [1, 170], [1, 200]])
y = np.array([0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1])

# 创建深度等于3的决策树模型
model = DecisionTreeClassifier(max_depth=3)

# 训练模型
model.fit(X, y)

# 可视化生成的决策树
plt.figure(figsize=(12, 8))
tree.plot_tree(model, filled=True, feature_names=["颜色", "重量"], class_names=["苹果", "橙子"])
plt.title("决策树示例")
plt.show()
相关推荐
weixin_429630264 分钟前
第8章 集成学习
人工智能·机器学习·集成学习
deephub11 分钟前
BipedalWalker实战:SAC算法如何让机器人学会稳定行走
人工智能·机器学习·机器人·强化学习
慕沐.14 分钟前
【算法】冒泡排序的原理及实现
java·算法·排序算法
TracyCoder12315 分钟前
分布式算法(八):一致性哈希——分布式系统的负载均衡利器
分布式·算法·哈希算法
存内计算开发者19 分钟前
存算一体架构在空间计算中的应用
人工智能·神经网络·机器学习·计算机视觉·架构·空间计算·存算一体
Juan_201221 分钟前
P2865 [USACO06NOV] Roadblocks G 题解
c++·算法·图论·题解
MediaTea27 分钟前
Python 库手册:gc 垃圾回收
java·开发语言·jvm·python·算法
Jay20021111 小时前
【机器学习】21-22 机器学习系统开发流程 & 倾斜数据集
人工智能·机器学习·计算机视觉
QxQ么么6 小时前
移远通信(桂林)26校招-助理AI算法工程师-面试纪录
人工智能·python·算法·面试
雪碧聊技术9 小时前
深度学习、机器学习、人工智能三者的关系
人工智能·深度学习·机器学习