决策树oo

决策树学习的算法通常是一个递归地选择最优特征(选择方法的不同,对应着不同的算法),并根据该特征对训练数据进行分割,使得各个子数据集有一个最好的分类的过程。这一过程对应着对特征空间的划分,也对应着决策树的构建

步骤(译)

从根节点开始

计算所有可能特征的信息增益,并选择信息增益最高的特征

根据选择的特征对数据集进行拆分,并创建树的左右分支

继续重复分割过程,直到满足停止条件:

当一个节点100%是一个类时当分割节点时

将导致树超过最大深度

额外分割的信息增益小于阈值

当一个节点中的样例数量低于阈值时

简单实例

python 复制代码
# 导入所需的库
from sklearn.tree import DecisionTreeClassifier
from sklearn import tree
import matplotlib.pyplot as plt
import numpy as np

# 解决中文乱码问题
plt.rcParams['font.sans-serif']=['SimHei'] 
# 创建训练数据集
X = np.array([[0, 150], [0, 200], [1, 160], [1, 190], [0, 180],
              [1, 140], [1, 210], [0, 175], [0, 220], [1, 165],
              [1, 155], [0, 185], [0, 195], [1, 170], [1, 200]])
y = np.array([0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1])

# 创建深度等于3的决策树模型
model = DecisionTreeClassifier(max_depth=3)

# 训练模型
model.fit(X, y)

# 可视化生成的决策树
plt.figure(figsize=(12, 8))
tree.plot_tree(model, filled=True, feature_names=["颜色", "重量"], class_names=["苹果", "橙子"])
plt.title("决策树示例")
plt.show()
相关推荐
独自破碎E9 分钟前
【总和拆分 + 双变量遍历】LCR_012_寻找数组的中心下标
数据结构·算法
WBluuue9 分钟前
Codeforces 1076 Div3(ABCDEFG)
c++·算法
u01092727120 分钟前
模板编译期排序算法
开发语言·c++·算法
GIS瞧葩菜29 分钟前
Cesium 轴拖拽 + 旋转圈拖拽 核心数学知识
人工智能·算法·机器学习
m0_6860416136 分钟前
C++中的适配器模式变体
开发语言·c++·算法
txzrxz36 分钟前
结构体排序,双指针,单调栈
数据结构·算法·双指针算法·单调栈·结构体排序
AndrewHZ40 分钟前
【AI黑话日日新】什么是AI智能体?
人工智能·算法·语言模型·大模型·llm·ai智能体
wWYy.41 分钟前
算法:二叉树最大路径和
数据结构·算法
葱明撅腚43 分钟前
利用Python挖掘城市数据
python·算法·gis·聚类
We་ct1 小时前
LeetCode 36. 有效的数独:Set实现哈希表最优解
前端·算法·leetcode·typescript·散列表