决策树oo

决策树学习的算法通常是一个递归地选择最优特征(选择方法的不同,对应着不同的算法),并根据该特征对训练数据进行分割,使得各个子数据集有一个最好的分类的过程。这一过程对应着对特征空间的划分,也对应着决策树的构建

步骤(译)

从根节点开始

计算所有可能特征的信息增益,并选择信息增益最高的特征

根据选择的特征对数据集进行拆分,并创建树的左右分支

继续重复分割过程,直到满足停止条件:

当一个节点100%是一个类时当分割节点时

将导致树超过最大深度

额外分割的信息增益小于阈值

当一个节点中的样例数量低于阈值时

简单实例

python 复制代码
# 导入所需的库
from sklearn.tree import DecisionTreeClassifier
from sklearn import tree
import matplotlib.pyplot as plt
import numpy as np

# 解决中文乱码问题
plt.rcParams['font.sans-serif']=['SimHei'] 
# 创建训练数据集
X = np.array([[0, 150], [0, 200], [1, 160], [1, 190], [0, 180],
              [1, 140], [1, 210], [0, 175], [0, 220], [1, 165],
              [1, 155], [0, 185], [0, 195], [1, 170], [1, 200]])
y = np.array([0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1])

# 创建深度等于3的决策树模型
model = DecisionTreeClassifier(max_depth=3)

# 训练模型
model.fit(X, y)

# 可视化生成的决策树
plt.figure(figsize=(12, 8))
tree.plot_tree(model, filled=True, feature_names=["颜色", "重量"], class_names=["苹果", "橙子"])
plt.title("决策树示例")
plt.show()
相关推荐
L_cl33 分钟前
【Python 算法零基础 3.递推】
算法
int型码农1 小时前
数据结构第七章(四)-B树和B+树
数据结构·b树·算法·b+树
先做个垃圾出来………1 小时前
汉明距离(Hamming Distance)
开发语言·python·算法
小羊在奋斗2 小时前
【LeetCode 热题 100】二叉树的最大深度 / 翻转二叉树 / 二叉树的直径 / 验证二叉搜索树
算法·leetcode·职场和发展
2301_794461573 小时前
力扣-283-移动零
算法·leetcode·职场和发展
编程绿豆侠3 小时前
力扣HOT100之二叉树:98. 验证二叉搜索树
算法·leetcode·职场和发展
技术流浪者3 小时前
C/C++实践(十)C语言冒泡排序深度解析:发展历史、技术方法与应用场景
c语言·数据结构·c++·算法·排序算法
I AM_SUN4 小时前
98. 验证二叉搜索树
数据结构·c++·算法·leetcode
学习中的码虫4 小时前
数据结构基础排序算法
数据结构·算法·排序算法
yidaqiqi5 小时前
[目标检测] YOLO系列算法讲解
算法·yolo·目标检测