决策树oo

决策树学习的算法通常是一个递归地选择最优特征(选择方法的不同,对应着不同的算法),并根据该特征对训练数据进行分割,使得各个子数据集有一个最好的分类的过程。这一过程对应着对特征空间的划分,也对应着决策树的构建

步骤(译)

从根节点开始

计算所有可能特征的信息增益,并选择信息增益最高的特征

根据选择的特征对数据集进行拆分,并创建树的左右分支

继续重复分割过程,直到满足停止条件:

当一个节点100%是一个类时当分割节点时

将导致树超过最大深度

额外分割的信息增益小于阈值

当一个节点中的样例数量低于阈值时

简单实例

python 复制代码
# 导入所需的库
from sklearn.tree import DecisionTreeClassifier
from sklearn import tree
import matplotlib.pyplot as plt
import numpy as np

# 解决中文乱码问题
plt.rcParams['font.sans-serif']=['SimHei'] 
# 创建训练数据集
X = np.array([[0, 150], [0, 200], [1, 160], [1, 190], [0, 180],
              [1, 140], [1, 210], [0, 175], [0, 220], [1, 165],
              [1, 155], [0, 185], [0, 195], [1, 170], [1, 200]])
y = np.array([0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1])

# 创建深度等于3的决策树模型
model = DecisionTreeClassifier(max_depth=3)

# 训练模型
model.fit(X, y)

# 可视化生成的决策树
plt.figure(figsize=(12, 8))
tree.plot_tree(model, filled=True, feature_names=["颜色", "重量"], class_names=["苹果", "橙子"])
plt.title("决策树示例")
plt.show()
相关推荐
Aaron158815 分钟前
AD9084和Versal RF系列具体应用案例对比分析
嵌入式硬件·算法·fpga开发·硬件架构·硬件工程·信号处理·基带工程
laocooon52385788615 分钟前
插入法排序 python
开发语言·python·算法
wuhen_n1 小时前
LeetCode -- 1:两数之和(简单)
javascript·算法·leetcode·职场和发展
林shir2 小时前
Java基础1.7-数组
java·算法
Jeremy爱编码2 小时前
leetcode课程表
算法·leetcode·职场和发展
甄心爱学习3 小时前
SVD求解最小二乘(手写推导)
线性代数·算法·svd
努力学算法的蒟蒻3 小时前
day46(12.27)——leetcode面试经典150
算法·leetcode·面试
Blockbuater_drug3 小时前
InChIKey: 分子的“化学身份证”,从哈希原理到全球监管合规(2025)
算法·哈希算法·inchikey·rdkit·分子表达·化学信息学
橙汁味的风3 小时前
2EM算法详解
人工智能·算法·机器学习
维构lbs智能定位4 小时前
北斗卫星导航定位从核心框架到定位流程详解(一)
算法·北斗卫星导航定位系统