决策树oo

决策树学习的算法通常是一个递归地选择最优特征(选择方法的不同,对应着不同的算法),并根据该特征对训练数据进行分割,使得各个子数据集有一个最好的分类的过程。这一过程对应着对特征空间的划分,也对应着决策树的构建

步骤(译)

从根节点开始

计算所有可能特征的信息增益,并选择信息增益最高的特征

根据选择的特征对数据集进行拆分,并创建树的左右分支

继续重复分割过程,直到满足停止条件:

当一个节点100%是一个类时当分割节点时

将导致树超过最大深度

额外分割的信息增益小于阈值

当一个节点中的样例数量低于阈值时

简单实例

python 复制代码
# 导入所需的库
from sklearn.tree import DecisionTreeClassifier
from sklearn import tree
import matplotlib.pyplot as plt
import numpy as np

# 解决中文乱码问题
plt.rcParams['font.sans-serif']=['SimHei'] 
# 创建训练数据集
X = np.array([[0, 150], [0, 200], [1, 160], [1, 190], [0, 180],
              [1, 140], [1, 210], [0, 175], [0, 220], [1, 165],
              [1, 155], [0, 185], [0, 195], [1, 170], [1, 200]])
y = np.array([0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1])

# 创建深度等于3的决策树模型
model = DecisionTreeClassifier(max_depth=3)

# 训练模型
model.fit(X, y)

# 可视化生成的决策树
plt.figure(figsize=(12, 8))
tree.plot_tree(model, filled=True, feature_names=["颜色", "重量"], class_names=["苹果", "橙子"])
plt.title("决策树示例")
plt.show()
相关推荐
Lips61116 分钟前
2026.1.20力扣刷题笔记
笔记·算法·leetcode
2501_9413297225 分钟前
YOLOv8-LADH马匹检测识别算法详解与实现
算法·yolo·目标跟踪
洛生&25 分钟前
Planets Queries II(倍增,基环内向森林)
算法
小郭团队1 小时前
1_6_五段式SVPWM (传统算法反正切+DPWM2)算法理论与 MATLAB 实现详解
嵌入式硬件·算法·matlab·dsp开发
小郭团队1 小时前
1_7_五段式SVPWM (传统算法反正切+DPWM3)算法理论与 MATLAB 实现详解
开发语言·嵌入式硬件·算法·matlab·dsp开发
鱼跃鹰飞1 小时前
Leetcode347:前K个高频元素
数据结构·算法·leetcode·面试
bybitq1 小时前
LeetCode236-二叉树的最近公共祖先(LCA)问题详解-C++
算法·深度优先
啊阿狸不会拉杆1 小时前
《数字图像处理》第 7 章 - 小波与多分辨率处理
图像处理·人工智能·算法·计算机视觉·数字图像处理
王锋(oxwangfeng)2 小时前
自动驾驶领域OCC标注
人工智能·机器学习·自动驾驶
小鸡吃米…2 小时前
机器学习中的分类算法
人工智能·机器学习·分类