决策树oo

决策树学习的算法通常是一个递归地选择最优特征(选择方法的不同,对应着不同的算法),并根据该特征对训练数据进行分割,使得各个子数据集有一个最好的分类的过程。这一过程对应着对特征空间的划分,也对应着决策树的构建

步骤(译)

从根节点开始

计算所有可能特征的信息增益,并选择信息增益最高的特征

根据选择的特征对数据集进行拆分,并创建树的左右分支

继续重复分割过程,直到满足停止条件:

当一个节点100%是一个类时当分割节点时

将导致树超过最大深度

额外分割的信息增益小于阈值

当一个节点中的样例数量低于阈值时

简单实例

python 复制代码
# 导入所需的库
from sklearn.tree import DecisionTreeClassifier
from sklearn import tree
import matplotlib.pyplot as plt
import numpy as np

# 解决中文乱码问题
plt.rcParams['font.sans-serif']=['SimHei'] 
# 创建训练数据集
X = np.array([[0, 150], [0, 200], [1, 160], [1, 190], [0, 180],
              [1, 140], [1, 210], [0, 175], [0, 220], [1, 165],
              [1, 155], [0, 185], [0, 195], [1, 170], [1, 200]])
y = np.array([0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1])

# 创建深度等于3的决策树模型
model = DecisionTreeClassifier(max_depth=3)

# 训练模型
model.fit(X, y)

# 可视化生成的决策树
plt.figure(figsize=(12, 8))
tree.plot_tree(model, filled=True, feature_names=["颜色", "重量"], class_names=["苹果", "橙子"])
plt.title("决策树示例")
plt.show()
相关推荐
夜思红尘3 小时前
算法--双指针
python·算法·剪枝
散峰而望4 小时前
【算法竞赛】C++函数详解:从定义、调用到高级用法
c语言·开发语言·数据结构·c++·算法·github
CoderCodingNo4 小时前
【GESP】C++五级真题(贪心思想考点) luogu-B4071 [GESP202412 五级] 武器强化
开发语言·c++·算法
我有一些感想……4 小时前
An abstract way to solve Luogu P1001
c++·算法·ai·洛谷·mlp
前端小L4 小时前
双指针专题(三):去重的艺术——「三数之和」
javascript·算法·双指针与滑动窗口
智者知已应修善业5 小时前
【求等差数列个数/无序获取最大最小次大次小】2024-3-8
c语言·c++·经验分享·笔记·算法
LYFlied5 小时前
【每日算法】LeetCode 416. 分割等和子集(动态规划)
数据结构·算法·leetcode·职场和发展·动态规划
多米Domi0116 小时前
0x3f 第19天 javase黑马81-87 ,三更1-23 hot100子串
python·算法·leetcode·散列表
历程里程碑6 小时前
滑动窗口最大值:单调队列高效解法
数据结构·算法·leetcode
課代表6 小时前
从初等数学到高等数学
算法·微积分·函数·极限·导数·积分·方程