决策树oo

决策树学习的算法通常是一个递归地选择最优特征(选择方法的不同,对应着不同的算法),并根据该特征对训练数据进行分割,使得各个子数据集有一个最好的分类的过程。这一过程对应着对特征空间的划分,也对应着决策树的构建

步骤(译)

从根节点开始

计算所有可能特征的信息增益,并选择信息增益最高的特征

根据选择的特征对数据集进行拆分,并创建树的左右分支

继续重复分割过程,直到满足停止条件:

当一个节点100%是一个类时当分割节点时

将导致树超过最大深度

额外分割的信息增益小于阈值

当一个节点中的样例数量低于阈值时

简单实例

python 复制代码
# 导入所需的库
from sklearn.tree import DecisionTreeClassifier
from sklearn import tree
import matplotlib.pyplot as plt
import numpy as np

# 解决中文乱码问题
plt.rcParams['font.sans-serif']=['SimHei'] 
# 创建训练数据集
X = np.array([[0, 150], [0, 200], [1, 160], [1, 190], [0, 180],
              [1, 140], [1, 210], [0, 175], [0, 220], [1, 165],
              [1, 155], [0, 185], [0, 195], [1, 170], [1, 200]])
y = np.array([0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1])

# 创建深度等于3的决策树模型
model = DecisionTreeClassifier(max_depth=3)

# 训练模型
model.fit(X, y)

# 可视化生成的决策树
plt.figure(figsize=(12, 8))
tree.plot_tree(model, filled=True, feature_names=["颜色", "重量"], class_names=["苹果", "橙子"])
plt.title("决策树示例")
plt.show()
相关推荐
业精于勤的牙5 小时前
浅谈:算法中的斐波那契数(二)
算法·职场和发展
江上鹤.1486 小时前
Day40 复习日
人工智能·深度学习·机器学习
不穿格子的程序员6 小时前
从零开始写算法——链表篇4:删除链表的倒数第 N 个结点 + 两两交换链表中的节点
数据结构·算法·链表
liuyao_xianhui6 小时前
寻找峰值--优选算法(二分查找法)
算法
dragoooon346 小时前
[hot100 NO.19~24]
数据结构·算法
Tony_yitao7 小时前
15.华为OD机考 - 执行任务赚积分
数据结构·算法·华为od·algorithm
C雨后彩虹8 小时前
任务总执行时长
java·数据结构·算法·华为·面试
风筝在晴天搁浅8 小时前
代码随想录 463.岛屿的周长
算法
一个不知名程序员www8 小时前
算法学习入门---priority_queue(C++)
c++·算法