经典网络模型

Alexnet


VGG


VGG的启示

VGGNet采用了多次堆叠3x3的卷积核,这样做的目的是减少参数的数量。

例如,2个3x3的卷积核效果相当于1个5x5的卷积核效果,因为它们的感受野(输入图像上映射区域的大小)相同。但2个3x3卷积核的参数个数(18个)却比1个5x5(25个)的卷积核参数个数少。

类似地,3个3x3的卷积核相当于1个7x7的卷积核,而1个7x7的卷积核的参数个数为49,而3个3x3的卷积核的参数个数仅为27。

感受野


ResNet

为了解决深度神经网络存在的问题

· 层数越多,训练效果一定越好吗?

· 如何优化过深的神经网络?

· 如何避免梯度消失和梯度爆炸?

ResNet 即深度残差网络

ResNet使用了一种连接方式叫做"shortcut connection",顾名思义,shortcut就是"抄近道"的意思

ResNet模型引入残差网络结构,在两层或两层以上的节点两端添加了一条"捷径",这样一来,原来的输出F(x)就变成了F(x)+x

ResNet通过引入残差结构,我们就可以直接使用传统的反向传播对很深的神经网络进行训练,并且收敛速度快,误差小网络越深,梯度消失的现象就越来越明显,网络的训练效果也不好,这样的问题就称为"退化"

ResNet通过引入残差结构,很好地解决了"退化"问题,退化与过拟合都会使网络预测准确率降低,但两者并不是一回事

相关推荐
高洁011 分钟前
CLIP 的双编码器架构是如何优化图文关联的?(2)
python·深度学习·机器学习·知识图谱
线束线缆组件品替网1 分钟前
Bulgin 防水圆形线缆在严苛环境中的工程实践
人工智能·数码相机·自动化·软件工程·智能电视
Cherry的跨界思维8 分钟前
【AI测试全栈:Vue核心】22、从零到一:Vue3+ECharts构建企业级AI测试可视化仪表盘项目实战
vue.js·人工智能·echarts·vue3·ai全栈·测试全栈·ai测试全栈
冬奇Lab9 分钟前
【Cursor进阶实战·07】OpenSpec实战:告别“凭感觉“,用规格驱动AI编程
人工智能·ai编程
玖疯子11 分钟前
2025年总结框架
人工智能
dazzle31 分钟前
计算机视觉处理(OpenCV基础教学(十九):图像轮廓特征查找技术详解)
人工智能·opencv·计算机视觉
koo36431 分钟前
pytorch深度学习笔记9
pytorch·笔记·深度学习
拌面jiang32 分钟前
过拟合--Overfitting(#拌面)
人工智能·深度学习·机器学习
MM_MS38 分钟前
Halcon控制语句
java·大数据·前端·数据库·人工智能·算法·视觉检测
桂花饼42 分钟前
基于第三方中转的高效 Sora-2 接口集成方案
人工智能·aigc·ai视频生成·gemini 3 pro·gpt-5.2·ai绘画4k·sora_video2