经典网络模型

Alexnet


VGG


VGG的启示

VGGNet采用了多次堆叠3x3的卷积核,这样做的目的是减少参数的数量。

例如,2个3x3的卷积核效果相当于1个5x5的卷积核效果,因为它们的感受野(输入图像上映射区域的大小)相同。但2个3x3卷积核的参数个数(18个)却比1个5x5(25个)的卷积核参数个数少。

类似地,3个3x3的卷积核相当于1个7x7的卷积核,而1个7x7的卷积核的参数个数为49,而3个3x3的卷积核的参数个数仅为27。

感受野


ResNet

为了解决深度神经网络存在的问题

· 层数越多,训练效果一定越好吗?

· 如何优化过深的神经网络?

· 如何避免梯度消失和梯度爆炸?

ResNet 即深度残差网络

ResNet使用了一种连接方式叫做"shortcut connection",顾名思义,shortcut就是"抄近道"的意思

ResNet模型引入残差网络结构,在两层或两层以上的节点两端添加了一条"捷径",这样一来,原来的输出F(x)就变成了F(x)+x

ResNet通过引入残差结构,我们就可以直接使用传统的反向传播对很深的神经网络进行训练,并且收敛速度快,误差小网络越深,梯度消失的现象就越来越明显,网络的训练效果也不好,这样的问题就称为"退化"

ResNet通过引入残差结构,很好地解决了"退化"问题,退化与过拟合都会使网络预测准确率降低,但两者并不是一回事

相关推荐
深圳市青牛科技实业有限公司11 分钟前
【青牛科技】应用方案|D2587A高压大电流DC-DC
人工智能·科技·单片机·嵌入式硬件·机器人·安防监控
水豚AI课代表31 分钟前
分析报告、调研报告、工作方案等的提示词
大数据·人工智能·学习·chatgpt·aigc
几两春秋梦_32 分钟前
符号回归概念
人工智能·数据挖掘·回归
用户691581141651 小时前
Ascend Extension for PyTorch的源码解析
人工智能
用户691581141652 小时前
Ascend C的编程模型
人工智能
-Nemophilist-2 小时前
机器学习与深度学习-1-线性回归从零开始实现
深度学习·机器学习·线性回归
成富2 小时前
文本转SQL(Text-to-SQL),场景介绍与 Spring AI 实现
数据库·人工智能·sql·spring·oracle
CSDN云计算3 小时前
如何以开源加速AI企业落地,红帽带来新解法
人工智能·开源·openshift·红帽·instructlab
艾派森3 小时前
大数据分析案例-基于随机森林算法的智能手机价格预测模型
人工智能·python·随机森林·机器学习·数据挖掘
hairenjing11233 小时前
在 Android 手机上从SD 卡恢复数据的 6 个有效应用程序
android·人工智能·windows·macos·智能手机