经典网络模型

Alexnet


VGG


VGG的启示

VGGNet采用了多次堆叠3x3的卷积核,这样做的目的是减少参数的数量。

例如,2个3x3的卷积核效果相当于1个5x5的卷积核效果,因为它们的感受野(输入图像上映射区域的大小)相同。但2个3x3卷积核的参数个数(18个)却比1个5x5(25个)的卷积核参数个数少。

类似地,3个3x3的卷积核相当于1个7x7的卷积核,而1个7x7的卷积核的参数个数为49,而3个3x3的卷积核的参数个数仅为27。

感受野


ResNet

为了解决深度神经网络存在的问题

· 层数越多,训练效果一定越好吗?

· 如何优化过深的神经网络?

· 如何避免梯度消失和梯度爆炸?

ResNet 即深度残差网络

ResNet使用了一种连接方式叫做"shortcut connection",顾名思义,shortcut就是"抄近道"的意思

ResNet模型引入残差网络结构,在两层或两层以上的节点两端添加了一条"捷径",这样一来,原来的输出F(x)就变成了F(x)+x

ResNet通过引入残差结构,我们就可以直接使用传统的反向传播对很深的神经网络进行训练,并且收敛速度快,误差小网络越深,梯度消失的现象就越来越明显,网络的训练效果也不好,这样的问题就称为"退化"

ResNet通过引入残差结构,很好地解决了"退化"问题,退化与过拟合都会使网络预测准确率降低,但两者并不是一回事

相关推荐
一切皆有可能!!1 小时前
实践篇:利用ragas在自己RAG上实现LLM评估②
人工智能·语言模型
月白风清江有声3 小时前
爆炸仿真的学习日志
人工智能
华奥系科技4 小时前
智慧水务发展迅猛:从物联网架构到AIoT系统的跨越式升级
人工智能·物联网·智慧城市
R²AIN SUITE4 小时前
MCP协议重构AI Agent生态:万能插槽如何终结工具孤岛?
人工智能
b***25114 小时前
动力电池点焊机:驱动电池焊接高效与可靠的核心力量|比斯特自动化
人工智能·科技·自动化
Gyoku Mint5 小时前
机器学习×第二卷:概念下篇——她不再只是模仿,而是开始决定怎么靠近你
人工智能·python·算法·机器学习·pandas·ai编程·matplotlib
小和尚同志5 小时前
通俗易懂的 MCP 概念入门
人工智能·aigc
dudly5 小时前
大语言模型评测体系全解析(下篇):工具链、学术前沿与实战策略
人工智能·语言模型
zzlyx995 小时前
AI大数据模型如何与thingsboard物联网结合
人工智能·物联网
说私域6 小时前
定制开发开源AI智能名片驱动下的海报工厂S2B2C商城小程序运营策略——基于社群口碑传播与子市场细分的实证研究
人工智能·小程序·开源·零售