在 Cocos Creator 中使用 protobuf.js 库可以方便地进行协议的序列化和反序列化。
下面是使用 protobuf.js 的详细说明:
一、protobuf环境安装
1、安装 npm
protobuf环境安装安装需要使用 npm 命令进行,因此首先需要安装 npm 。
如果你还没安装 npm , 请参考:windows安装npm教程。
2、全局安装pbjs
打开命令行工具,输入以下命令
npm install -g pbjs
安装成功后 C:\Users\Administrator\AppData\Roaming\npm 显示如下信息:
二、 Cocos Creator 中使用 protobuf.js 库
确定了模块格式和导出方式,就可以在脚本资源里使用 protobufjs
这个模块。
1、创建协议文件
在项目中创建一个 .proto
文件,定义协议结构
例如,创建一个名为 message.proto
的文件,内容如下:
syntax = "proto3";
message Player {
string name = 1;
int32 level = 2;
}
```
这里定义了一个名为 Player
的消息类型,包含 name
和 level
两个字段。
2、将 protobuf 中的 proto 文件编译成TypeScript 文件
pbjs 指令的使用可以查看 官方文档:pbjs地址
我们以打包上面生成的 message.proto
文件为例,进行演示。
命令行执行:
pbjs D:/test/3/proto/message.proto --ts D:/test/3/proto/message.ts
打包完成后,在 D:/test/3/proto/ 目录,生成了 message.ts 文件,如下:
message.ts 文件内容如下:
export interface Player {
name?: string;
level?: number;
}
export function encodePlayer(message: Player): Uint8Array {
let bb = popByteBuffer();
_encodePlayer(message, bb);
return toUint8Array(bb);
}
function _encodePlayer(message: Player, bb: ByteBuffer): void {
// optional string name = 1;
let $name = message.name;
if ($name !== undefined) {
writeVarint32(bb, 10);
writeString(bb, $name);
}
// optional int32 level = 2;
let $level = message.level;
if ($level !== undefined) {
writeVarint32(bb, 16);
writeVarint64(bb, intToLong($level));
}
}
export function decodePlayer(binary: Uint8Array): Player {
return _decodePlayer(wrapByteBuffer(binary));
}
function _decodePlayer(bb: ByteBuffer): Player {
let message: Player = {} as any;
end_of_message: while (!isAtEnd(bb)) {
let tag = readVarint32(bb);
switch (tag >>> 3) {
case 0:
break end_of_message;
// optional string name = 1;
case 1: {
message.name = readString(bb, readVarint32(bb));
break;
}
// optional int32 level = 2;
case 2: {
message.level = readVarint32(bb);
break;
}
default:
skipUnknownField(bb, tag & 7);
}
}
return message;
}
export interface Long {
low: number;
high: number;
unsigned: boolean;
}
interface ByteBuffer {
bytes: Uint8Array;
offset: number;
limit: number;
}
function pushTemporaryLength(bb: ByteBuffer): number {
let length = readVarint32(bb);
let limit = bb.limit;
bb.limit = bb.offset + length;
return limit;
}
function skipUnknownField(bb: ByteBuffer, type: number): void {
switch (type) {
case 0: while (readByte(bb) & 0x80) { } break;
case 2: skip(bb, readVarint32(bb)); break;
case 5: skip(bb, 4); break;
case 1: skip(bb, 8); break;
default: throw new Error("Unimplemented type: " + type);
}
}
function stringToLong(value: string): Long {
return {
low: value.charCodeAt(0) | (value.charCodeAt(1) << 16),
high: value.charCodeAt(2) | (value.charCodeAt(3) << 16),
unsigned: false,
};
}
function longToString(value: Long): string {
let low = value.low;
let high = value.high;
return String.fromCharCode(
low & 0xFFFF,
low >>> 16,
high & 0xFFFF,
high >>> 16);
}
// The code below was modified from https://github.com/protobufjs/bytebuffer.js
// which is under the Apache License 2.0.
let f32 = new Float32Array(1);
let f32_u8 = new Uint8Array(f32.buffer);
let f64 = new Float64Array(1);
let f64_u8 = new Uint8Array(f64.buffer);
function intToLong(value: number): Long {
value |= 0;
return {
low: value,
high: value >> 31,
unsigned: value >= 0,
};
}
let bbStack: ByteBuffer[] = [];
function popByteBuffer(): ByteBuffer {
const bb = bbStack.pop();
if (!bb) return { bytes: new Uint8Array(64), offset: 0, limit: 0 };
bb.offset = bb.limit = 0;
return bb;
}
function pushByteBuffer(bb: ByteBuffer): void {
bbStack.push(bb);
}
function wrapByteBuffer(bytes: Uint8Array): ByteBuffer {
return { bytes, offset: 0, limit: bytes.length };
}
function toUint8Array(bb: ByteBuffer): Uint8Array {
let bytes = bb.bytes;
let limit = bb.limit;
return bytes.length === limit ? bytes : bytes.subarray(0, limit);
}
function skip(bb: ByteBuffer, offset: number): void {
if (bb.offset + offset > bb.limit) {
throw new Error('Skip past limit');
}
bb.offset += offset;
}
function isAtEnd(bb: ByteBuffer): boolean {
return bb.offset >= bb.limit;
}
function grow(bb: ByteBuffer, count: number): number {
let bytes = bb.bytes;
let offset = bb.offset;
let limit = bb.limit;
let finalOffset = offset + count;
if (finalOffset > bytes.length) {
let newBytes = new Uint8Array(finalOffset * 2);
newBytes.set(bytes);
bb.bytes = newBytes;
}
bb.offset = finalOffset;
if (finalOffset > limit) {
bb.limit = finalOffset;
}
return offset;
}
function advance(bb: ByteBuffer, count: number): number {
let offset = bb.offset;
if (offset + count > bb.limit) {
throw new Error('Read past limit');
}
bb.offset += count;
return offset;
}
function readBytes(bb: ByteBuffer, count: number): Uint8Array {
let offset = advance(bb, count);
return bb.bytes.subarray(offset, offset + count);
}
function writeBytes(bb: ByteBuffer, buffer: Uint8Array): void {
let offset = grow(bb, buffer.length);
bb.bytes.set(buffer, offset);
}
function readString(bb: ByteBuffer, count: number): string {
// Sadly a hand-coded UTF8 decoder is much faster than subarray+TextDecoder in V8
let offset = advance(bb, count);
let fromCharCode = String.fromCharCode;
let bytes = bb.bytes;
let invalid = '\uFFFD';
let text = '';
for (let i = 0; i < count; i++) {
let c1 = bytes[i + offset], c2: number, c3: number, c4: number, c: number;
// 1 byte
if ((c1 & 0x80) === 0) {
text += fromCharCode(c1);
}
// 2 bytes
else if ((c1 & 0xE0) === 0xC0) {
if (i + 1 >= count) text += invalid;
else {
c2 = bytes[i + offset + 1];
if ((c2 & 0xC0) !== 0x80) text += invalid;
else {
c = ((c1 & 0x1F) << 6) | (c2 & 0x3F);
if (c < 0x80) text += invalid;
else {
text += fromCharCode(c);
i++;
}
}
}
}
// 3 bytes
else if ((c1 & 0xF0) == 0xE0) {
if (i + 2 >= count) text += invalid;
else {
c2 = bytes[i + offset + 1];
c3 = bytes[i + offset + 2];
if (((c2 | (c3 << 8)) & 0xC0C0) !== 0x8080) text += invalid;
else {
c = ((c1 & 0x0F) << 12) | ((c2 & 0x3F) << 6) | (c3 & 0x3F);
if (c < 0x0800 || (c >= 0xD800 && c <= 0xDFFF)) text += invalid;
else {
text += fromCharCode(c);
i += 2;
}
}
}
}
// 4 bytes
else if ((c1 & 0xF8) == 0xF0) {
if (i + 3 >= count) text += invalid;
else {
c2 = bytes[i + offset + 1];
c3 = bytes[i + offset + 2];
c4 = bytes[i + offset + 3];
if (((c2 | (c3 << 8) | (c4 << 16)) & 0xC0C0C0) !== 0x808080) text += invalid;
else {
c = ((c1 & 0x07) << 0x12) | ((c2 & 0x3F) << 0x0C) | ((c3 & 0x3F) << 0x06) | (c4 & 0x3F);
if (c < 0x10000 || c > 0x10FFFF) text += invalid;
else {
c -= 0x10000;
text += fromCharCode((c >> 10) + 0xD800, (c & 0x3FF) + 0xDC00);
i += 3;
}
}
}
}
else text += invalid;
}
return text;
}
function writeString(bb: ByteBuffer, text: string): void {
// Sadly a hand-coded UTF8 encoder is much faster than TextEncoder+set in V8
let n = text.length;
let byteCount = 0;
// Write the byte count first
for (let i = 0; i < n; i++) {
let c = text.charCodeAt(i);
if (c >= 0xD800 && c <= 0xDBFF && i + 1 < n) {
c = (c << 10) + text.charCodeAt(++i) - 0x35FDC00;
}
byteCount += c < 0x80 ? 1 : c < 0x800 ? 2 : c < 0x10000 ? 3 : 4;
}
writeVarint32(bb, byteCount);
let offset = grow(bb, byteCount);
let bytes = bb.bytes;
// Then write the bytes
for (let i = 0; i < n; i++) {
let c = text.charCodeAt(i);
if (c >= 0xD800 && c <= 0xDBFF && i + 1 < n) {
c = (c << 10) + text.charCodeAt(++i) - 0x35FDC00;
}
if (c < 0x80) {
bytes[offset++] = c;
} else {
if (c < 0x800) {
bytes[offset++] = ((c >> 6) & 0x1F) | 0xC0;
} else {
if (c < 0x10000) {
bytes[offset++] = ((c >> 12) & 0x0F) | 0xE0;
} else {
bytes[offset++] = ((c >> 18) & 0x07) | 0xF0;
bytes[offset++] = ((c >> 12) & 0x3F) | 0x80;
}
bytes[offset++] = ((c >> 6) & 0x3F) | 0x80;
}
bytes[offset++] = (c & 0x3F) | 0x80;
}
}
}
function writeByteBuffer(bb: ByteBuffer, buffer: ByteBuffer): void {
let offset = grow(bb, buffer.limit);
let from = bb.bytes;
let to = buffer.bytes;
// This for loop is much faster than subarray+set on V8
for (let i = 0, n = buffer.limit; i < n; i++) {
from[i + offset] = to[i];
}
}
function readByte(bb: ByteBuffer): number {
return bb.bytes[advance(bb, 1)];
}
function writeByte(bb: ByteBuffer, value: number): void {
let offset = grow(bb, 1);
bb.bytes[offset] = value;
}
function readFloat(bb: ByteBuffer): number {
let offset = advance(bb, 4);
let bytes = bb.bytes;
// Manual copying is much faster than subarray+set in V8
f32_u8[0] = bytes[offset++];
f32_u8[1] = bytes[offset++];
f32_u8[2] = bytes[offset++];
f32_u8[3] = bytes[offset++];
return f32[0];
}
function writeFloat(bb: ByteBuffer, value: number): void {
let offset = grow(bb, 4);
let bytes = bb.bytes;
f32[0] = value;
// Manual copying is much faster than subarray+set in V8
bytes[offset++] = f32_u8[0];
bytes[offset++] = f32_u8[1];
bytes[offset++] = f32_u8[2];
bytes[offset++] = f32_u8[3];
}
function readDouble(bb: ByteBuffer): number {
let offset = advance(bb, 8);
let bytes = bb.bytes;
// Manual copying is much faster than subarray+set in V8
f64_u8[0] = bytes[offset++];
f64_u8[1] = bytes[offset++];
f64_u8[2] = bytes[offset++];
f64_u8[3] = bytes[offset++];
f64_u8[4] = bytes[offset++];
f64_u8[5] = bytes[offset++];
f64_u8[6] = bytes[offset++];
f64_u8[7] = bytes[offset++];
return f64[0];
}
function writeDouble(bb: ByteBuffer, value: number): void {
let offset = grow(bb, 8);
let bytes = bb.bytes;
f64[0] = value;
// Manual copying is much faster than subarray+set in V8
bytes[offset++] = f64_u8[0];
bytes[offset++] = f64_u8[1];
bytes[offset++] = f64_u8[2];
bytes[offset++] = f64_u8[3];
bytes[offset++] = f64_u8[4];
bytes[offset++] = f64_u8[5];
bytes[offset++] = f64_u8[6];
bytes[offset++] = f64_u8[7];
}
function readInt32(bb: ByteBuffer): number {
let offset = advance(bb, 4);
let bytes = bb.bytes;
return (
bytes[offset] |
(bytes[offset + 1] << 8) |
(bytes[offset + 2] << 16) |
(bytes[offset + 3] << 24)
);
}
function writeInt32(bb: ByteBuffer, value: number): void {
let offset = grow(bb, 4);
let bytes = bb.bytes;
bytes[offset] = value;
bytes[offset + 1] = value >> 8;
bytes[offset + 2] = value >> 16;
bytes[offset + 3] = value >> 24;
}
function readInt64(bb: ByteBuffer, unsigned: boolean): Long {
return {
low: readInt32(bb),
high: readInt32(bb),
unsigned,
};
}
function writeInt64(bb: ByteBuffer, value: Long): void {
writeInt32(bb, value.low);
writeInt32(bb, value.high);
}
function readVarint32(bb: ByteBuffer): number {
let c = 0;
let value = 0;
let b: number;
do {
b = readByte(bb);
if (c < 32) value |= (b & 0x7F) << c;
c += 7;
} while (b & 0x80);
return value;
}
function writeVarint32(bb: ByteBuffer, value: number): void {
value >>>= 0;
while (value >= 0x80) {
writeByte(bb, (value & 0x7f) | 0x80);
value >>>= 7;
}
writeByte(bb, value);
}
function readVarint64(bb: ByteBuffer, unsigned: boolean): Long {
let part0 = 0;
let part1 = 0;
let part2 = 0;
let b: number;
b = readByte(bb); part0 = (b & 0x7F); if (b & 0x80) {
b = readByte(bb); part0 |= (b & 0x7F) << 7; if (b & 0x80) {
b = readByte(bb); part0 |= (b & 0x7F) << 14; if (b & 0x80) {
b = readByte(bb); part0 |= (b & 0x7F) << 21; if (b & 0x80) {
b = readByte(bb); part1 = (b & 0x7F); if (b & 0x80) {
b = readByte(bb); part1 |= (b & 0x7F) << 7; if (b & 0x80) {
b = readByte(bb); part1 |= (b & 0x7F) << 14; if (b & 0x80) {
b = readByte(bb); part1 |= (b & 0x7F) << 21; if (b & 0x80) {
b = readByte(bb); part2 = (b & 0x7F); if (b & 0x80) {
b = readByte(bb); part2 |= (b & 0x7F) << 7;
}
}
}
}
}
}
}
}
}
return {
low: part0 | (part1 << 28),
high: (part1 >>> 4) | (part2 << 24),
unsigned,
};
}
function writeVarint64(bb: ByteBuffer, value: Long): void {
let part0 = value.low >>> 0;
let part1 = ((value.low >>> 28) | (value.high << 4)) >>> 0;
let part2 = value.high >>> 24;
// ref: src/google/protobuf/io/coded_stream.cc
let size =
part2 === 0 ?
part1 === 0 ?
part0 < 1 << 14 ?
part0 < 1 << 7 ? 1 : 2 :
part0 < 1 << 21 ? 3 : 4 :
part1 < 1 << 14 ?
part1 < 1 << 7 ? 5 : 6 :
part1 < 1 << 21 ? 7 : 8 :
part2 < 1 << 7 ? 9 : 10;
let offset = grow(bb, size);
let bytes = bb.bytes;
switch (size) {
case 10: bytes[offset + 9] = (part2 >>> 7) & 0x01;
case 9: bytes[offset + 8] = size !== 9 ? part2 | 0x80 : part2 & 0x7F;
case 8: bytes[offset + 7] = size !== 8 ? (part1 >>> 21) | 0x80 : (part1 >>> 21) & 0x7F;
case 7: bytes[offset + 6] = size !== 7 ? (part1 >>> 14) | 0x80 : (part1 >>> 14) & 0x7F;
case 6: bytes[offset + 5] = size !== 6 ? (part1 >>> 7) | 0x80 : (part1 >>> 7) & 0x7F;
case 5: bytes[offset + 4] = size !== 5 ? part1 | 0x80 : part1 & 0x7F;
case 4: bytes[offset + 3] = size !== 4 ? (part0 >>> 21) | 0x80 : (part0 >>> 21) & 0x7F;
case 3: bytes[offset + 2] = size !== 3 ? (part0 >>> 14) | 0x80 : (part0 >>> 14) & 0x7F;
case 2: bytes[offset + 1] = size !== 2 ? (part0 >>> 7) | 0x80 : (part0 >>> 7) & 0x7F;
case 1: bytes[offset] = size !== 1 ? part0 | 0x80 : part0 & 0x7F;
}
}
function readVarint32ZigZag(bb: ByteBuffer): number {
let value = readVarint32(bb);
// ref: src/google/protobuf/wire_format_lite.h
return (value >>> 1) ^ -(value & 1);
}
function writeVarint32ZigZag(bb: ByteBuffer, value: number): void {
// ref: src/google/protobuf/wire_format_lite.h
writeVarint32(bb, (value << 1) ^ (value >> 31));
}
function readVarint64ZigZag(bb: ByteBuffer): Long {
let value = readVarint64(bb, /* unsigned */ false);
let low = value.low;
let high = value.high;
let flip = -(low & 1);
// ref: src/google/protobuf/wire_format_lite.h
return {
low: ((low >>> 1) | (high << 31)) ^ flip,
high: (high >>> 1) ^ flip,
unsigned: false,
};
}
function writeVarint64ZigZag(bb: ByteBuffer, value: Long): void {
let low = value.low;
let high = value.high;
let flip = high >> 31;
// ref: src/google/protobuf/wire_format_lite.h
writeVarint64(bb, {
low: (low << 1) ^ flip,
high: ((high << 1) | (low >>> 31)) ^ flip,
unsigned: false,
});
}
3、代码中测试打包出来的typescript脚本
因为pbjs打包后protobufjs代码是直接集成在 message.ts 文件中的,因此不需要我们再去引用protobufjs库。
import { _decorator, Component, log } from 'cc';
const { ccclass, property } = _decorator;
import{Player,encodePlayer,decodePlayer} from "./message"
@ccclass('main')
export class main extends Component {
onLoad() {
const player:Player = {
name:"John",
level:10,
}
// 将消息对象序列化为二进制数据
const binaryData:Uint8Array = encodePlayer(player);
// 从二进制数据中反序列化为消息对象
const deserializedPlayer = decodePlayer(binaryData);
// 访问消息对象的字段
console.log(deserializedPlayer.name); // 输出: John
console.log(deserializedPlayer.level); // 输出: 10
}
start() {
}
update(deltaTime: number) {
}
}
运行打印结果如下:
好了,Cocos Creator 3.8中如何如何将 proto文件打包成typescript 脚本,以及如何使用 protobuf 的教程到此就结束。如果觉得我的博文帮到了您,您的赞关注是对我最大的支持。如遇到什么问题,可评论区留言。