Python合并同类别且相交的矩形框

Python合并同类别且相交的矩形框

前言

前提条件

相关介绍

  • Python是一种跨平台的计算机程序设计语言。是一个高层次的结合了解释性、编译性、互动性和面向对象的脚本语言。最初被设计用于编写自动化脚本(shell),随着版本的不断更新和语言新功能的添加,越多被用于独立的、大型项目的开发。

实验环境

  • Python 3.x (面向对象的高级语言)

Python合并同类别且相交的矩形框

代码实现

python 复制代码
import os
import cv2
import json
from collections import deque
import numpy as np

def xyxy2xywh(rect):
    '''
    (x1,y1,x2,y2) -> (x,y,w,h)
    '''
    return [rect[0],rect[1],rect[2]-rect[0],rect[3]-rect[1]]

def xywh2xyxy(rect):
    '''
    (x,y,w,h) -> (x1,y1,x2,y2)
    '''
    return [rect[0],rect[1],rect[0]+rect[2],rect[1]+rect[3]]


def is_RecA_RecB_interSect(RecA, RecB): # Rec = [xmin,ymin,xmax,ymax]
    # 获取交集区域的[xmin,ymin,xmax,ymax]
    x_A_and_B_min = max(RecA[0], RecB[0])
    y_A_and_B_min = max(RecA[1], RecB[1])
    x_A_and_B_max = min(RecA[2], RecB[2])
    y_A_and_B_max = min(RecA[3], RecB[3])
    # 计算交集部分面积, 当(xmax - xmin)为负时,说明A与B框无交集,直接置为0。 (ymax - ymin)同理。
    interArea = max(0, x_A_and_B_max - x_A_and_B_min) * max(0, y_A_and_B_max - y_A_and_B_min)
    return interArea > 0

def merge_RecA_RecB(RecA, RecB): # Rec = [xmin,ymin,xmax,ymax]
    # 获取合并区域的[xmin,ymin,xmax,ymax]
    xmin = min(RecA[0], RecB[0])
    ymin = min(RecA[1], RecB[1])
    xmax = max(RecA[2], RecB[2])
    ymax = max(RecA[3], RecB[3])
    return [xmin,ymin, xmax,ymax]

'''
递归是一个过程或函数在其定义或说明中有直接或间接调用自身的一种方法,
它通常把一个大型复杂的问题层层转化为一个与原问题相似的规模较小的问题来求解。
因此递归过程,最重要的就是查看能不能讲原本的问题分解为更小的子问题,这是使用递归的关键。


    终止条件:矩形框数为1或者为空。
    返回值: 新合并的矩形框
    本级任务: 每一级需要做的就是遍历从它开始的后续矩形框,寻找可以和他合并的矩形

'''
def merge_rect(box,labels):
    '''
    合并重叠框 

    输入参数: box :[[xmin,ymin,xmax,ymax],...]
            labels :['0', '0', '1', '1', '1', '2', '2', '2']

    返回:
        合并后的box:[[xmin,ymin,xmax,ymax],...]
        合并后的labels:['0', '1', '2']
    '''
    if len(box) == 1 or len(box) == 0 : # 矩形框数为1或者为空
        return box,labels

    for i in range(len(box)):
        RecA_xyxy = box[i]
        labelA = labels[i]
        for j in range(i+1, len(box)):
            RecB_xyxy = box[j]
            labelB = labels[i]
            if is_RecA_RecB_interSect(RecA_xyxy, RecB_xyxy)  and labelA==labelB:
                rect_xyxy = merge_RecA_RecB(RecA_xyxy, RecB_xyxy)
                # 使用remove(elem)来移除元素
                box.remove(RecA_xyxy)
                box.remove(RecB_xyxy)
                box.append(rect_xyxy)
                labels.pop(i)
                labels.pop(j-1)
                labels.append(labelA)
                merge_rect(box,labels)
                # 返回上一级循环,避免重复处理已合并的矩形
                return box,labels
    return box,labels

        

if __name__ == "__main__":
    color = {
        '0' : (255,0,0),
        '1' : (0,255,0),
        '2' : (0,0,255),
    }

    box = [[71, 32, 81, 109], [70, 80, 81, 111], [77, 221, 86, 240], [76, 220, 87, 258], 
           [76, 240, 87, 258], [150, 379, 160, 400], [151, 380, 160, 418], [151, 400, 160, 416]]
    labels = ['0', '0', '1', '1', '1', '2', '2', '2']
    print(labels,box,sep='\n')


    img = cv2.imread('res.png')
    for (xmin,ymin,xmax,ymax),label in zip(box,labels):
        img = cv2.rectangle(img, (xmin,ymin), (xmax,ymax), color[label], 1)
    cv2.imwrite('origin.jpg', img)


    merged_box,merged_labels = merge_rect(box,labels)
    print(merged_labels,merged_box,sep='\n')

    merged_img = cv2.imread('res.png')
    for (xmin,ymin,xmax,ymax),label in zip(merged_box,merged_labels):
        merged_img = cv2.rectangle(merged_img, (xmin,ymin), (xmax,ymax), color[label], 1)
    cv2.imwrite('merged.jpg', merged_img)
相关推荐
臭东西的学习笔记2 分钟前
论文学习——机器学习引导的蛋白质工程
人工智能·学习·机器学习
Rabbit_QL5 分钟前
【水印添加工具】从零设计一个工程级 Python 图片水印工具:WaterMask 架构与实现
开发语言·python
天“码”行空23 分钟前
简化Lambda——方法引用
java·开发语言
大王小生26 分钟前
说说CSV文件和C#解析csv文件的几种方式
人工智能·c#·csv·csvhelper·csvreader
z203483152030 分钟前
C++对象布局
开发语言·c++
m0_4626052233 分钟前
第G3周:CGAN入门|生成手势图像
人工智能
Beginner x_u41 分钟前
如何解释JavaScript 中 this 的值?
开发语言·前端·javascript·this 指针
bubiyoushang8881 小时前
基于LSTM神经网络的短期风速预测实现方案
人工智能·神经网络·lstm
中烟创新1 小时前
烟草专卖文书生成智能体与法规案卷评查智能体获评“年度技术最佳实践奖”
人工智能
得一录1 小时前
大模型中的多模态知识
人工智能·aigc