Python合并同类别且相交的矩形框

Python合并同类别且相交的矩形框

前言

前提条件

相关介绍

  • Python是一种跨平台的计算机程序设计语言。是一个高层次的结合了解释性、编译性、互动性和面向对象的脚本语言。最初被设计用于编写自动化脚本(shell),随着版本的不断更新和语言新功能的添加,越多被用于独立的、大型项目的开发。

实验环境

  • Python 3.x (面向对象的高级语言)

Python合并同类别且相交的矩形框

代码实现

python 复制代码
import os
import cv2
import json
from collections import deque
import numpy as np

def xyxy2xywh(rect):
    '''
    (x1,y1,x2,y2) -> (x,y,w,h)
    '''
    return [rect[0],rect[1],rect[2]-rect[0],rect[3]-rect[1]]

def xywh2xyxy(rect):
    '''
    (x,y,w,h) -> (x1,y1,x2,y2)
    '''
    return [rect[0],rect[1],rect[0]+rect[2],rect[1]+rect[3]]


def is_RecA_RecB_interSect(RecA, RecB): # Rec = [xmin,ymin,xmax,ymax]
    # 获取交集区域的[xmin,ymin,xmax,ymax]
    x_A_and_B_min = max(RecA[0], RecB[0])
    y_A_and_B_min = max(RecA[1], RecB[1])
    x_A_and_B_max = min(RecA[2], RecB[2])
    y_A_and_B_max = min(RecA[3], RecB[3])
    # 计算交集部分面积, 当(xmax - xmin)为负时,说明A与B框无交集,直接置为0。 (ymax - ymin)同理。
    interArea = max(0, x_A_and_B_max - x_A_and_B_min) * max(0, y_A_and_B_max - y_A_and_B_min)
    return interArea > 0

def merge_RecA_RecB(RecA, RecB): # Rec = [xmin,ymin,xmax,ymax]
    # 获取合并区域的[xmin,ymin,xmax,ymax]
    xmin = min(RecA[0], RecB[0])
    ymin = min(RecA[1], RecB[1])
    xmax = max(RecA[2], RecB[2])
    ymax = max(RecA[3], RecB[3])
    return [xmin,ymin, xmax,ymax]

'''
递归是一个过程或函数在其定义或说明中有直接或间接调用自身的一种方法,
它通常把一个大型复杂的问题层层转化为一个与原问题相似的规模较小的问题来求解。
因此递归过程,最重要的就是查看能不能讲原本的问题分解为更小的子问题,这是使用递归的关键。


    终止条件:矩形框数为1或者为空。
    返回值: 新合并的矩形框
    本级任务: 每一级需要做的就是遍历从它开始的后续矩形框,寻找可以和他合并的矩形

'''
def merge_rect(box,labels):
    '''
    合并重叠框 

    输入参数: box :[[xmin,ymin,xmax,ymax],...]
            labels :['0', '0', '1', '1', '1', '2', '2', '2']

    返回:
        合并后的box:[[xmin,ymin,xmax,ymax],...]
        合并后的labels:['0', '1', '2']
    '''
    if len(box) == 1 or len(box) == 0 : # 矩形框数为1或者为空
        return box,labels

    for i in range(len(box)):
        RecA_xyxy = box[i]
        labelA = labels[i]
        for j in range(i+1, len(box)):
            RecB_xyxy = box[j]
            labelB = labels[i]
            if is_RecA_RecB_interSect(RecA_xyxy, RecB_xyxy)  and labelA==labelB:
                rect_xyxy = merge_RecA_RecB(RecA_xyxy, RecB_xyxy)
                # 使用remove(elem)来移除元素
                box.remove(RecA_xyxy)
                box.remove(RecB_xyxy)
                box.append(rect_xyxy)
                labels.pop(i)
                labels.pop(j-1)
                labels.append(labelA)
                merge_rect(box,labels)
                # 返回上一级循环,避免重复处理已合并的矩形
                return box,labels
    return box,labels

        

if __name__ == "__main__":
    color = {
        '0' : (255,0,0),
        '1' : (0,255,0),
        '2' : (0,0,255),
    }

    box = [[71, 32, 81, 109], [70, 80, 81, 111], [77, 221, 86, 240], [76, 220, 87, 258], 
           [76, 240, 87, 258], [150, 379, 160, 400], [151, 380, 160, 418], [151, 400, 160, 416]]
    labels = ['0', '0', '1', '1', '1', '2', '2', '2']
    print(labels,box,sep='\n')


    img = cv2.imread('res.png')
    for (xmin,ymin,xmax,ymax),label in zip(box,labels):
        img = cv2.rectangle(img, (xmin,ymin), (xmax,ymax), color[label], 1)
    cv2.imwrite('origin.jpg', img)


    merged_box,merged_labels = merge_rect(box,labels)
    print(merged_labels,merged_box,sep='\n')

    merged_img = cv2.imread('res.png')
    for (xmin,ymin,xmax,ymax),label in zip(merged_box,merged_labels):
        merged_img = cv2.rectangle(merged_img, (xmin,ymin), (xmax,ymax), color[label], 1)
    cv2.imwrite('merged.jpg', merged_img)
相关推荐
魔都吴所谓25 分钟前
【go】map基础操作
开发语言·后端·golang
程序员编程指南1 小时前
Qt 嵌入式 Linux 系统定制全指南
linux·c语言·开发语言·c++·qt
七月shi人3 小时前
【AI编程工具IDE/CLI/插件专栏】-国外IDE与Cursor能力对比
ide·人工智能·ai编程·代码助手
橙 子_4 小时前
基于 Amazon Nova Sonic 和 MCP 构建语音交互 Agent
python
2zcode5 小时前
基于Matlab的深度学习智能行人检测与统计系统
人工智能·深度学习·目标跟踪
宇寒风暖6 小时前
Flask 框架全面详解
笔记·后端·python·学习·flask·知识
seabirdssss6 小时前
错误: 找不到或无法加载主类 原因: java.lang.ClassNotFoundException
java·开发语言
哪 吒6 小时前
【2025C卷】华为OD机试九日集训第3期 - 按算法分类,由易到难,提升编程能力和解题技巧
python·算法·华为od·华为od机试·2025c卷
weixin_464078076 小时前
机器学习sklearn:过滤
人工智能·机器学习·sklearn
weixin_464078076 小时前
机器学习sklearn:降维
人工智能·机器学习·sklearn