Spark内核

环境准备及提交流程

底层通信协议

  1. Akka通信协议,收发邮箱是一体的
  2. Netty通信协议,收发邮箱是分开的

任务调度

任务的最小单位是线程。失败重试,会记录失败的次数,如果超过最大重试次数,宣告Application失败。失败的同时会记录它上一次所在的ExecutorID和Host, 最多重试4次。

Shuffle

功能:打散重分区

特点:无论MR和Spark,Shuffle都需要落盘。其中的区别是MR每次都落盘,Spark是尽可能少落盘。

落盘的话就需要考虑不同分区之间的数据如何存放的问题。假设每个Executor有两个Task,总共有三个分区。以下是四种shuffle落盘的策略:

  1. 每个Task里面的数据打散成3个文件,一个Executor生成6个文件
  2. Executor里面的两个Task的数据打散到3个文件中,一个分区一个文件,共3个文件。
  3. sortShuffle: Executor里面打散的数据落盘到一个文件中,三个分区的数据通过索引来区分。这个就是SortShuffle,目前MR就是sortShuffle。
  4. bypassShuffle:对不同分区的数据进行打散重分区时不对数据进行排序,只适合非聚合类的shuffle算子,比如reduceByKey。

Spark内存管理

堆内和堆外内存

  1. 堆内:通过JVM申请的内存,通过了JVM的转化,更加安全,并且有垃圾回收机制。
  2. 堆外:也称页缓存,自己向操作系统申请。没有经过JVM转换,不安全,没有垃圾回收机制。堆外的内存空间是通过C语言控制的,有出现内存泄漏的危险。
    • 优点:
      • 减少了垃圾回收的工作
      • 加快了复制的速度,省略了序列化的操作。
    • 缺点:
      • 堆外内存难以控制,如果内存泄漏,很难排查
      • 不适合存储复杂对象。
  3. spark中,堆外内存默认是关闭的。
  4. 配置方法
    • executor-memory 和 driver-memory
    • 启用堆外内存spark.memory.offHeap.eabled,并由spark.memory.offHeap.size设置堆外空间大小。

内存的分配

  1. 静态内存管理,简称写死
    • 分为三个部分:
      • 存储空间60%
      • 执行空间20%
      • 其他空间20%
  2. 统一内存管理,简称动态分配
    • 分为三个部分
      • 其他空间40%
      • 存储空间+计算空间=60%
    • 存储和计算空间反向使用,允许空间借用。

RDD的持久化机制

存储内存淘汰规则:

  • 旧RDD所属RDD不能处于被读状态,避免引发一致性问题
  • 新旧Block不能属于同一个RDD,避免循环淘汰
  • 按照最近最少LRU进行淘汰
相关推荐
一辉ComeOn2 分钟前
【大数据高并发核心场景实战】缓存层 - 写缓存
java·大数据·redis·缓存
笨蛋少年派2 分钟前
Kafka分布式流处理平台简介
分布式·kafka
jkyy20145 分钟前
从驾驶安全到健康管理—汽车座舱的健康数字化变革
大数据·人工智能·物联网·健康医疗
en-route8 分钟前
数据仓库中的维度、指标、度量与属性
大数据·数据仓库
Splashtop高性能远程控制软件9 分钟前
远程办公防线不 “失守”,终端防护策略全解析
大数据·运维·网络·网络安全·远程工作·远程控制·splashtop
她说彩礼65万12 分钟前
WPF 样式
大数据·hadoop·wpf
u***B79213 分钟前
【分布式文件存储系统Minio】2024.12保姆级教程
分布式
AllData公司负责人14 分钟前
AIIData数据中台商业版+开源版双模式
大数据·架构·开源
MilieStone20 分钟前
抢占心血管诊疗高地:引入超导心磁图仪,为医院注入增长新动能
大数据·人工智能
世界尽头与你21 分钟前
Hadoop 未授权访问漏洞
大数据·hadoop·分布式